J0ENglish

Welcome to Petoi Doc Center

This is the GitBook hub for hosting the documentation of our products. We keep fast iteration on our models
and codes to bring bionic robotic pets to the world. Please read the notes regarding versions carefully to
configure your robot.

If you need any help, please write to support@petoi.com, or post on our forum at petoi.camp.

Products

0 Nybble Cat User Manual

0 Bittle Dog User Manual

https://www.petoi.camp/
https://petoi.gitbook.io/nybble/
https://petoi.gitbook.io/bittle/

Guide for the Petoi App

a0

Introduction

Thanks for choosing Petoi's robot Bittle or Nybble. This guide will help you set up your robot buddy and
provide a simpler Ul to calibrate, control, and program it. For advanced users, we recommend you keep the
robot updated with the OpenCat firmware on Github for the best compatibility and newest features.

Download and installation

The app works on both Android and iOS devices.

e Android 4.4+
e |OS 11+

Connect to your robot

You need to plug the Bluetooth dongle into the 6-pin socket on the NyBoard. Pay attention to the Bluetooth
dongle's pin order. Long-press the button on the battery to turn on the robot's power.

@ If the buzzer beeps three times (bi-bi-bi) repetitively after bootup or during use, it means the battery
is low. Please charge itin time. The charging portis on one end of the battery.

https://github.com/PetoiCamp/OpenCat
https://play.google.com/store/apps/details?id=com.petoi.petoiapp
https://apps.apple.com/us/app/petoi/id1581548095
https://docs.petoi.com/modules/bluetooth-dual-mode

{N=7" ;
e

R T 1S

UND DN S+ XH X1 Bif

The LED on the Bluetooth dongle should blink waiting for a connection. Open the app and scan to connect
the device with the name Bittle, Petoi, or OpenCat. Remember to open the Bluetooth service and grant the
app access to the service.

11:497 all § &%) 1:47 9 oll ¥ @)

Bluetooth Connection 4 Select

Please select your robot

BittleBLE-596022 Disconnect

BzLv Air Connect

Unnamed Connect
Unnamed Connect
EL_BOEYA100 Connecting... Connect Bittle
Unnamed Connect
Unnamed Connect

Re-scan connection

If the Bluetooth is connected, its LED will light steady. The robot will play a three-tone melody. If the robot
doesn't respond or malfunction later, press the reset button on the NyBoard to restart the program on the
NyBoard.

The App should automatically detect Nybble or Bittle with the latest OpenCat firmware. Otherwise, it will
show the selections for Nybble or Bittle. The option can be re-visited in the control panel.

Calibrate the joints

The following screen will be calibration for first-time users. It can also be re-visited in the control panel.

1:437 ol T - 11:439 oll T - 1449 oll T - 1:449 alF e

Settings 14 Calibration Preparation 4 Calibration save 4 Calibration sa

lease Assemble Bittle first @

Qe !

\
\ g
n e, 1. Please install limbs so that the upper and 1. Please install limbs so that the upper and
L lower limbs are perpendicular to each other lower limbs are perpendicular to each other
y . 2. Pick a servo in the pic above, adjust 2. Pick a servo in the pic above, adjust
% 1. If calibration has never been done, angles of limbs to 90 degree of each other angles of limbs to 90 degree of each other
please don't install the limbs
2. Click the "Start calibration" button,

" = 8 Reset all angles to zero> Reset all angles to zero:
servos will be turned to the calibration ' : ‘ ' ‘
First-time Calibration > SEO
Select an angle + _— The angle of servo "12": + -3 —
Start calibration

Actions: Actions:

Actions:

Rest and Ik F tar
Rest Stand Walk

Go to control panel Calibration Calibration

Select the joint index in the image on the calibration page, then click + or - to fine-tune the joints to right
angles. Use the included L-shape tool as a reference. If the offset exceeds +/- 9 degrees, you need to
take off the servo and reinstall it by one tooth. For example, what used to be +9 (out of bound) should
become -3 or something.

You can switch between rest, stand, walk to test the effect of calibration. Ifit's good, remember to click "save"
to save the calibration offsets. Otherwise, click return on the top-left corner to abandon the calibration.

Use the control panel

In the control panel, you can use the pe-set buttons to control the robot.

Default Actions

St]
Stand

crawl walk trot

Hip up Push up

Direction Control
Customized Commands

backflip

Gaits

The left panel sets both the robot's gaits and directions and send combined command, such as "walk left"
and "trot forward". The robot will only move if an initial gait and direction are selected. The "step" has no
direction, and "backward" has left and right directions. The pause button "||" will pause the robot's motion
and turn off the servos, so that you can rotate the joints to any angle. The "Turbo" button (@) turns on/off

the gyro, a sensor to detect the robot's body orientation. Turning it on will make the robot keep adjusting to
body angles, and will know when it's upside down. Turning it off will reduce calculation and make it walk
faster and more stable.

Postures and behaviors

The built-in postures and behaviors can be triggered by pressing the buttons. Don't press the button too
frequently and repeatedly. Allow some time for the robot to finish its current tasks.

Customized buttons

You can also define customized commands by pressing the "+" button. Long-press a custom command
button to editit. There's a lite serial console to test the command and even configure the robot.

Edit command save

Name kick

Code M8-3012400351-45

Console output

[} Test

Custom commands to try:

* move head (move joint angle)

mO 45

* move head left and right (move jointl anglel joint2 angle?2 The angle is -127~128)

mO0 -70 0 70

* Sit

ksit

* move joints one by one

mO0-700708-30845

* MOVE joints simutanuosly

MO0 -458-30 12 -60

* show current joint angles

j

*long meow once

uo 1

* short meow three times

u2 20

* play a short tone (beep tone duration, duration is 0~256)

b12 100

* play a melody (beep tonel durationl, tone2 duration2, tone3 duration3, only 64 characters are allowed)
b14 90 14 90 21 90 21 90 23 90 23 90 21 180

Below are the indexes of the joints for your reference. Observe the patterns of the ordering and try to
remember them.

A more detailed table can be found in the user manual: https:/bittle.petoi.com/7-play-with-bittle

Updates and support

We keep improving the app and will inform you of the updates when available. Please write to
support@petoi.com if you have any questions about the app.

& serialMaster User Guide

How to use python scripts to have fun with Nybblel or Bittlel

Preparation

1. Install python (version= 3.6, such as Anaconda3-5.2.0-Windows-x86_64.exe)

2. Install pyserial library (version 3.5)

Run script

The script program will automatically identify the serial port number at the very beginning of the run, and
complete the connection.

Generally, when using a USB adapter to connect to Nybble (or Bittle), there is only one serial port number:

§itenems - 0 X
XEHF) REA) EHE(V) BEH)
pep 2 HE W

b T EETE (i) v &% DESKTOP-PFTFIV6

- it z&TR > @ USBiEiEsRETss
> (O EBituER > 1) &28R%
> @ BeEEsR > B aeiEss

v sl HEFUESE s . HEAUEThSE

https://bittle.petoi.com/7-play-with-bittle

TOEED S NI LTSS HE

> (@ e e

A SSETS > =0 FTEDBAZ
. B2 34 > 3 Bith
o EREE v @
b E'{, IREF0MN FBfEFF USB-SERIAL CH340 (COM11)
¥ Efﬁ :

> O 54,

> [e

, 2 e

> 0 BF

> [mERAiRE

> g AEOEE

> B RHgE

> B weae

> B EMRseE

> W EE. TR
>) BiERiSEHeE
s - ISR

s § ERBTasEgE
> ERRTREE
> P RRIERCES

> Im RHeE

> Bl BiEEcRE

Lol =rEmes y Tnssl

USB serial port number

When using the Bluetooth module, there are two serial port numbers:

L itEEE
TP RMEA) BEE(N) RENH)
== & L

b THE T (A) v & DESKTOP-PFTFIV6
- Il ZB&TR > @ USBIiEIEIRETEE
> (O ESithEs > I =2nE
> BHEEE . RS
> @] HEHkE) a HRIEENES
> ® rhg > Su iR
M GEETRE » = FTEDEADY
. 2 5hE > B B
= B v PR
- By IRSMRAERF B FaREERTT (COM10)
BTt L AtRESRTT (COMS)
> I B
> - E
> I YEineE
> =R
> O BF
> L1 WiEEREE
> AEORS
> B RHeE
> I AN
> 8§ EWRBLEE

o W EE. SUEERRE S
0 BiFNEbSHHE
» - EIRRIRE
VP EARTRGEHE
P EEETRGIeE
- P R)IERCES
» B RoneE

0 B—=:F#%10=

Bluetooth serial port number

Open Terminal (such as Anaconda Prompt), enter the path where the script is located (***\serialMaster), you
can use the following command to run the script:

Method 1: Run the ardSerial.py

1 **x*x\serialMaster>python3 ardSerial.py kbalance

Parameters: kbalance is a serial port command representing Nybble (or Bittle) skills.

Of course, you can also run this script without any parameters:
1 **x*\serialMaster>python3 ardSerial.py
When the system recognizes that there are multiple serial port numbers, the script will print out the following

prompt message at the very beginning of the run:

If there is no response after you input the serial command in the terminal, you should close the
terminal first, then change the value of "bluetoothPortindex" in the ardSerial.py (line:128)to connect
to another blue tooth serial port, then reopen the terminal and rerun the script.

When the script formally starts running, the following prompt information is printed out:
You can type 'quit’ or 'q' to exit.

Next, you can enter serial port commands in Terminal to control Nybble (or Bittle) to do various interesting
actions [e.g.

1 Kbalance # Command to control Nybble(or Bittle) to stand normally
2m0O -30 0 30 # Command to control Nybble(or Bittle) head to swing left and right

Method 2: Run a custom script, e.g example.py

1 **x*x\serialMaster>python3 example.py

The list testSchedule in example.py is used to test various serial port commands. Run the following script
code to see the execution effect of each serial port command in the list:

1 for task in testSchedule:

2 wrapper (task)

You can also refer to the content of the stepUpSchedaule list (in **\serialMaster\demos\stepup.py), write a
list of behaviors according to your actual needs, and realize your creativity. [

Note: When running the scripts under the path of \serialMaster\demos, you must first use the "cd demos"
command to enter the path where the scripts are located (\serialMaster\demos), and then use the python3
command to run the script (e.g. "python3 stepup.py")

Explanation of the serial port commands in the list testSchedule:

['kbalance', 2]

e 'kbalance' indicates the command to control Bittle to stand normally

¢ 2 indicates the postponed time after finishing the command, in seconds

['m|l [01 'Zo]l 1'5]

m indicates the command to control the rotation of the joint servo

0 indicates the index number of joint servo

-20 indicates the rotation angle (this angle refers to the origin, rather than additive) the unitis degree

1.5 indicates the postponed time after finishing the command, in seconds. It can be a float number.
[lml’ [lml’ IOI, I45l, Iol’ I-45l’ IOI, I45l, Iol’ l-45l], 2]

Using this format, multiple joint servo rotation commands can be issued at one time, and these joint servo
rotation commands are executed SEQUENTIALLY, not at the same time.

The meaning of this example is: the joint servo with index number O is first rotated to the 45 degree position,
and then rotated to the -45 degree position, and so on. After these motion commands are completed, the
next command will be executed after a 2-second delay.

r'm, ['M', '8, '-15', '9", '-20'], 2]

Using this format, multiple joint servo rotation commands can be issued at one time, and these joint servo
rotation commands are executed AT THE SAME TIME.

The meaning of this example is the joint servos with index numbers 8, 9 are rotated to the -15, -20 degree
positions at the same time. After these motion commands are completed, the next command will be
executed after a 2-second delay.

[d', 2]

¢ dindicates the command to put the robot down and shut down the servos

e 2 indicates the postponed time after finishing the command, in seconds
['c’, 2]

e cindicates the command to enter calibration mode

¢ 2 indicates the postponed time after finishing the command, in seconds. After these motion commands
are completed, the next command will be executed after a 2-second delay.

['clv [01 '9]1 2]

e cindicates the command to enter calibration mode
e (O indicates the index number of joint servo
¢ -9indicates the rotation angle, the unit is degree

e 2 indicates the postponed time after finishing the command, in seconds

Using this format, you can enter the calibration mode to calibrate the angle of a certain joint servo. Note: If
you want the correction value in this command to take effect, you need to enter the "s" command after
executing this command.

The meaning of this example: the joint servo with serial number O rotates -9 degrees. After these motion
commands are completed, the next command will be executed after a 2-second delay.

['i", [8, 50, 9, 50, 10, 50, 11, 50, 0, 0], 3]

i indicates the command to rotate multiple joint servos at the same time

8,9, 10, 11, 0 indicate the index numbers of joint servos

50, 50, 50, 50, 0 indicate the rotation angle (this angle refers to the origin, rather than additive), the unit
is degree

3indicates the postponed time after finishing the command, in seconds

[r,f2o,o0,o0,0,0,0,0,0, 45, 45, 45, 45, 36, 36, 36, 36], 5]

¢ |indicates the command to control all joint servos to rotate at the same time (currently the command
supports 16 degrees of freedom, that is, 16 servos)

e 20,0,0,0,0,0,0,0,45,45,45,45,36,36,36,36 indicate the rotation angle of each joint servo corresponding to
0-15 (this angle refers to the origin, rather than additive), the unit is degree

e 5indicates the postponed time after finishing the command, in seconds

['b', [10, 255], 2]

b indicates the command to control the buzzer to beep

10 indicates the music tone

255 indicates the lengths of duration, the value range is 0~255

2 indicates the postponed time after completing the pronunciation, in seconds

[Ibl, [Ibl’ l14l, I90I, I14l, I90I’ lzll’ .90" I21I’ '90', ‘23I, Igol’ I23l’ Igol’ l21l’ I180I], 5]

¢ b indicates the command to control the buzzer to beep
e '14''14','21','21', ‘23", '23', '21" indicate the music tones
e '90','90','90','90', '90", '90, '180" indicates the lengths of duration

e 5indicates the postponed time after the music melody is played, in seconds

Using this format, multiple tone pronunciation commands can be issued at one time, and a simple melody
can be played.

The meaning of this example is: play a simple melody, and delay 5 seconds after the music melody is
played.

For the description of other serial port commands, please refer to Chapter 7 of the Petoi Bittle User Manuals:

7 0 Play with Bittle
Petoi Bittle Manuals

Please help Nybble and Bittle find their sparks. Wish you have fun! [l

NYBOARD

NyBoard V1_0

Overview

MPUG050 motion sensor Raspberry Pi compatible interface

64Kbit EEPRO

19714 13 12
©®00
0280 B ||
i il°p* 4x Grove socket
o mE |

| « 2x Digital
» 1x Analog
|+ 1xI2CBUS

ATmega328

eset button

- A D S A [] n LA AR AN (] I FIAIR A . n

X RGB LED (NEeOFIXel) FUAYDBO 10 Channel Fvvivi controliel

Top side

Passive buzzer 16x PWM servo connector

I2C network switch

..\.

_)

Buzzer

W
7

@
® .
> 8 Infrared receiver
| w®
| 6‘ 52
O]
e @
- ®
* 9
L]
e @
(@ ® ® i@ sv m :
© & @ ® o X Arduino ICSP
® @ {3) GNDRST
K
| Servo Cap
= {Dptional)
(- _ 16V 10006 _ | _JJ 7.4V Battery socket

Bottom side

NyBoard V1 is an upgraded version considering the users' feedback on NyBoard VO. It's compatible with
previous versions, yet has some new design to make it easier to use.

e |t still uses Atmel ATMega328P as the main chip but adopts 16MHz without accelerating it to 20MHz.
Now the board is fully compatible with Arduino Uno, much easier for new users to Arduino.

e |tkeeps driving 16 PWM channels with PCA9685. The pin order is altered, but you don't even need to
read the indexes on the board, because the pin mapping is handled within the software.

e Now the 6-axis motion sensor MPU6050 is designed on the PCB, rather than a stand-alone module
soldered above the board. It supports a built-in DMP (Digital Motion Processor) to calculate the motion
data, as well as providing raw data for your own fusion and filtering algorithms.

e |t continues to use an 8KB onboard I2C EEPROM to save constants for skills.

e The power system is redesigned to provide a more stable supply. The structure for peripherals is also
optimized.

e From Jan 1st, 2021, We start to include an official Bluetooth dongle for wirelessly uploading and
communication. The default baud rate for all the communication ports is set to be 115200.

e The reset button is more accessible on the back of the board.

e We added 4 Grove socket to plug-and-play Seeed Studio's extensible modules. We still provide

standard 2.54mm through-holes besides the socket.
e We added 7 WS2812 RGB LEDs on the board as another form of output and status indicator.

e The socket for the battery is now anti-reverse.

Logic diagram of the controller

The configuration of NyBoard V1_0 is shown as below:

PD5: Passive Buzzer

PD4: VS1838B IR Sensor

PB2: 7 x WS2812 LED

GPIO Port

N
H ADC7: Battery Detector

Introduction to the onboard components

Main controller

NyBoard V1_0 uses Atmel ATMega328P-MUR as the main controller. We adopted its smaller version of
QFN32 for better layout, and it's near-identical to regular TQFP32.

ATMega328P works at 16MHz with a 5V supply. It has 2KB SRAM, 32KB Flash, and 1KB on-chip

CECNPDARM ALt HlhAa ~cAarvaA lhaAtlAaadAvr AfF AvAiiinA L nAa viAai Aaanm sinlaad AllAtAlhAn HhavAaiiAa HaA ~AviAal nAve

12C switch

The main chip runs at 5V, while the other peripherals run at a 3.3V logic level. We use PCA9306 to convert
the 12C bus of ATMega328P to 3.3V. We also added an 12C switch on the bus. By dialing it to "Arduino” or
"Raspberry Pi", you can change the 12C master of the onboard peripherals.

6-Axis IMU MPU6050

MPUG6050 is widely used in many DIY projects to acquire the motion state of devices. It detects the 3
acceleration and 3 angular motion states. It also includes a DMP to calculate the state directly, without using
the main controller's computational resources.

On NyBoard V1_0, its I2C address is 0x68. The interrupt pin is connected to the PD2 port of ATMega328P
(or the D2 pin of Arduino Uno).

There are a lot of available MPU6050 libraries and we are using 12CDev/6050DMP. You can also use other
versions:

Name Author Feature

12Cdev jrowberg built-in DMP

Adafruit MPU6050 Adafruit standard MPUG6050 library
Kalman Filter TKJ Electronics with Kalman filter

PCA9685 and the PWM servo ports

PCA9685 fans out 16 PWM 12-bit channels with instructions from the 12C port. Its address is set to 0x40.
There are 16 PWM indexes printed on the PCB, but you don't really need to read them because the pin-
mapping is done in the software. The physical wiring pattern is the same as the previous boards. You do
need to check the direction of the servo pins. Regular servos have 3 pins for PWM, power(2S), and ground
(GND). The ground should connect to the black wire of the servo.

On NyBoard V1_0, the servos' power connects to the 2S Li-ion battery. We designed our servos to be
compatible with 8.4V input. Regular servos usually run at 6V. You should not connect regular 9g servos like
the SG90 to the board directly.

We use Adafruit PWM Servo Driver Library for PCA9685.

EEPROM

We save the motion skills with an 8KB onboard I2C EEPROM AT24C64. Its 12C address is 0x54. The
lookup table of skills is saved in the 1KB on-chip EEPROM of ATMega328P. It uses <EEPROM.h>. You
need to pay attention to their differences when developing new codes.

The buzzer is driven by PD5 (or the D5 of Arduino UNO). The current is amplified by 2N7002 MOS.

Infrared receiver

We use VS1838B as the Infrared receiver, connected to PD4 (or D4 on Arduino Uno). It's driven by the
IRremote library of Arduino, the corresponding remote is encoded in NEC format. You may disable the other
protocols in IRremote.h to save Flash (about 10%!)

Voltage detector

The two LEDs in the Petoi logo indicates the powering state of the board. The left eye is blue for the logic
chips. The right eye is yellow for the servos' power. When NyBoard is connected to the battery, both LEDs
should lit up. When NyBoard is powered by the USB downloader, only the blue LED will lit up.

There's an anti-reverse socket for the battery. The battery's output is connected to ADC7 (or A7 of Arduino
Uno) and is not threaded to an open pin. ADC7 collects the voltage over a voltage divider. The actual
voltage is approximately 2x of the reading. A safe range of battery voltage is below 10V.

ADCroudi
Voltageeq = #‘Zﬁng x5.0x%2

You should charge the battery in time when the battery is lower than 7.4V.

WS2812 RGB LED

We added 7 WS2812 RGB LEDs (or the NeoPixel) on the NyBoard. The pin number is D10. They are
powered by the 5V DC-DC power chip for Raspberry Pi and are independent of the 5V network of
ATMega328P. So you need to plug in the battery to power the LEDs.

Grove sockets

We adopted the Grove sockets for convenient plug-and-play connections. There are three types of socket:

Grove Socket Pin Number Function

Gl 12C: SCL, SDA 12C with 3.3V logic signal
G2 A2, A3 Analog input; 0-5V

G3 PD8, PD9 Digital I/0; 0-5V

G4 PD6, PD7 Digital I/0; 0-5V

Power system

Fuse™ 500mA

ATMega328P

MPUG050
{M:> AT24C64 EEPROM
PCA9685
- [WS2812 LED
2S 7.4V > 16 x PWM Servo

The main chips are powered by a Low-dropout (LDO) linear regulators for noise removal and better stability.
We use LM1117-5V and XC6206P-3.3V to power 5V and 3.3V chips. The 3.3V LDO is connected in serial
after the 5V LDO for better efficiency.

There's a diode between the battery and LM1117-5V to prevent damage by the wrong connection. There's a
self-recover fuse (6V 500mA) on the USB uploader to limit the current and protect the USB port.

The Raspberry Pi consumes much more power, so we choose TPS565201 DC-DC to provide a 5V 3A
output. The peak output can be 5A and with high-temperature/current/voltage protection. It will cut off the
power when the chip keeps outputting >4A and over 100 Celcius degrees until the temperature drops to
normal. The WS2812 RGB LEDs are also powered by this DC-DC source.

The servos are powered by 2S Li-ion batteries directly. Pay attention not to short connect the power or any
pins on the NyBoard.

Last updated: Jan 13, 2021

NyBoard V1_1

Update :

NyBoard V1_1 is a V1 refreshed version mainly focused on the shortage of the ATMEGA328P-MU in our
supply chain.

Replace the ATMEGA328P-MU (QFN32=) with the ATMEGA328P-AU (TQFP32)
Removed 7 WS2812 LEDs to optimize the area.
A green LED is connected to the D10 port with PWM functions.

=

There's no changes of sockets and pin definitions from V1_0, the bootloader and the OpenCat sketchs
is fully compatible.

Overview

j/{"/“‘\l leoeee /*\)
g - XOROROIO R\
GND RST Srienaiing.
| = 3| N0
ol | E—) g_,?;»fsu
3 211 @) [soa
15 1413 12 ?

\ | =) : | LQ] CL
: 12C_Suwitch 5 @ o 5| @eno

0 @ R @ @ @ @ = 7| PR
g-alal| Hrdu Py -caracacaces B (] [1D % 3]| oA
. nng CS a5 -8 2 =) @%3
g d @]|p2
T i ol
: - TinkerGeng = 3| 5|
b i @@Pm = Rp2 Mm@@g 4 : pL:(uD9

n @ DG Ol 20009t E @(_'
@@@@®@ew w®000— LI
| ® @ 4 5 R 8 9 10 11 3|| ®PN°
e = @@‘ - 8- Blgr
Il JIRESET dddibdd | R2| ,m,;w 33 9| ©p?
R12[oa] (Mo N allos

:EG 7
a%z’czocw(ﬁ @ /

D000 ©00OE OOCLE OeCe

) CRE R R OREREEEREEREER T

7

NyBoard V1 is an upgraded version considering the users' feedback on NyBoard VO. It's compatible with
previous versions, yet has some new design to make it easier to use.

e |t still uses Atmel ATMega328P as the main chip but adopts 16MHz without accelerating it to 20MHz.
Now the board is fully compatible with Arduino Uno, much easier for new users to Arduino.

e It keeps driving 16 PWM channels with PCA9685. The pin order is altered, but you don't even need to
read the indexes on the board, because the pin mapping is handled within the software.

e Now the 6-axis motion sensor MPU6050 is designed on the PCB, rather than a stand-alone module
soldered above the board. It supports a built-in DMP (Digital Motion Processor) to calculate the motion
data, as well as providing raw data for your own fusion and filtering algorithms.

e |t continues to use an 8KB onboard 12C EEPROM to save constants for skills.

e The power system is redesigned to provide a more stable supply. The structure for peripherals is also
optimized.

e From Jan 1st, 2021, We start to include an official Bluetooth dongle for wirelessly uploading and
communication. The default baud rate for all the communication ports is setto be 115200.

e The reset button is more accessible on the back of the board.

e We added 4 Grove socket to plug-and-play Seeed Studio's extensible modules. We still provide
standard 2.54mm through-holes besides the socket.

e The socket for the battery is now anti-reverse.

Logic diagram of the controller

The configuration of NyBoard V1_0 is shown as below:

EDS: Cassive Huzzer,

PD4: V518388 IR Sensor

NMPUBUSU Inferrupt PUZ

GPIO Port

— |

T

—— e
|

\\I

B ADC7: Battery Detector

Gitve D

Introduction to the onboard components

Main controller

NyBoard V1_0 uses Atmel ATMega328P-AU, the same MCU of the Arduino Nano (UNO Compatible).
The ATMega328P works at 16MHz with a 5V supply. It has 2KB SRAM, 32KB Flash, and 1KB on-chip
EEPROM. With the same bootloader of Arduino Uno, you can upload sketches through the serial port.
LED (NEW!)

The WS2812 serial RGB LEDs are replaced by a single green LED. You can easily use it with standard
Arduino GPIO control commands.

12C switch

The main chip runs at 5V, while the other peripherals run at a 3.3V logic level. We use PCA9306 to convert
the 12C bus of ATMega328P to 3.3V. We also added an 12C switch on the bus. By dialing it to "Arduino" or

L1l oo WSS S B LI AT | S e Ve BN e S P R T Ry PRpSOR

6-Axis IMU MPU6050

MPUG6050 is widely used in many DIY projects to acquire the motion state of devices. It detects the 3
acceleration and 3 angular motion states. It also includes a DMP to calculate the state directly, without using
the main controller's computational resources.

On NyBoard V1_0, its I2C address is 0x68. The interrupt pin is connected to the PD2 port of ATMega328P
(or the D2 pin of Arduino Uno).

There are a lot of available MPU6050 libraries and we are using 12CDev/6050DMP. You can also use other
versions:

Name Author Feature

12Cdev jrowberg built-in DMP

Adafruit MPU6050 Adafruit standard MPUG6050 library
Kalman Filter TKJ Electronics with Kalman filter

PCA9685 and the PWM servo ports

PCA9685 fans out 16 PWM 12-bit channels with instructions from the 12C port. Its address is set to 0x40.
There are 16 PWM indexes printed on the PCB, but you don't really need to read them because the pin-
mapping is done in the software. The physical wiring pattern is the same as the previous boards. You do
need to check the direction of the servo pins. Regular servos have 3 pins for PWM, power(2S), and ground
(GND). The ground should connect to the black wire of the servo.

On NyBoard V1_0, the servos' power connects to the 2S Li-ion battery. We designed our servos to be
compatible with 8.4V input. Regular servos usually run at 6V. You should not connect regular 99 servos like
the SG90 to the board directly.

We use Adafruit PWM Servo Driver Library for PCA9685.

EEPROM

We save the motion skills with an 8KB onboard 1I2C EEPROM AT24C64. Its 12C address is 0x54. The
lookup table of skills is saved in the 1KB on-chip EEPROM of ATMega328P. It uses <EEPROM.h>. You
need to pay attention to their differences when developing new codes.

Passive buzzer

The buzzer is driven by PD5 (or the D5 of Arduino UNO). The current is amplified by 2N7002 MOS.

Infrared receiver

We use VS1838B as the Infrared receiver, connected to PD4 (or D4 on Arduino Uno). It's driven by the
IRremote library of Arduino, the corresponding remote is encoded in NEC format. You may disable the other

nrntnrnle in IDramnta h tn cava Elach fahnnit 1N0AN

Voltage detector

The two LEDs in the Petoi logo indicates the powering state of the board. The left eye is blue for the logic
chips. The right eye is yellow for the servos' power. When NyBoard is connected to the battery, both LEDs
should lit up. When NyBoard is powered by the USB downloader, only the blue LED will lit up.

There's an anti-reverse socket for the battery. The battery's output is connected to ADC7 (or A7 of Arduino
Uno) and is not threaded to an open pin. ADC7 collects the voltage over a voltage divider. The actual
voltage is approximately 2x of the reading. A safe range of battery voltage is below 10V.

ADCreading
Volt = ———x50x2
OtagEral = 7024

You should charge the battery in time when the battery is lower than 7.4V.
Grove sockets

We adopted the Grove sockets for convenient plug-and-play connections. There are three types of socket:

Grove Socket Pin Number Function

Gl 12C: SCL, SDA 12C with 3.3V logic signal
G2 A2, A3 Analog input; 0-5V

G3 PD8, PD9 Digital I/O; 0-5V

G4 PD6, PD7 Digital I/0; 0-5V

Power system

use™ 500mA

ATMega328P
m > "
MPUB050

M{> AT24C64 EEPROM
PCA9685

25 7.4V P 16 x PWM Servo

The main chips are powered by a Low-dropout (LDO) linear regulator for noise removal and better stability.
We use LM1117-5V and XC6206P-3.3V to power 5V and 3.3V chips. The 3.3V LDO is connected in serial
after the 5V LDO for better efficiency.

There's a diode between the battery and LM1117-5V to prevent damage by the wrong connection. There's a
self-recover fuse (6V 500mA) on the USB uploader to limit the current and protect the USB port.

The Raspberry Pi consumes much more power, so we choose TPS565201 DC-DC to provide a 5V 3A
output. The peak output can be 5A and with high-temperature/current/voltage protection. It will cut off the
power when the chip keeps outputting >4A and over 100 Celcius degrees until the temperature drops to
normal.

The servos are powered by 2S Li-ion batteries directly. Pay attention not to short connect the power or any
pins on the NyBoard.

BIBOARD

BiBoard Quick Start Guide

Introduction

BiBoard is a robot dog controller based on ESP32 developed by Petoi LLC. Unlike NyBoard for normal
users and robot lovers, BiBoard is mainly facing developers and geeks. High-performance processors,
larger memory and storage, wireless connections. Audio function is also included.

Modules and functions

The function partition for BiBoard is shown below:

prajeciv0.0 B @
x2{ono[sv|© © @

li%‘é].‘ iy
GILEJ%JE’EIT'FI

__ri2 RS Fo5 I
L —"

flcie _
" ¥ F]JR16
L= &Sczo

@1 c12

|

=
E f
|

Uolume |

Part No. Module Introduction
1 Battery Bittle battery or external 8.4V battery
socket
2 Power LED Left: blue/5V Right:yellow/8.4V
3 Power 5V DC-DC/ 5V USB/ 3.3V LDO
ICs 4 USB Sketches download

Downloader BiBoard automatic reset and boot

5 IMU MPU6050 6-Axis IMU with DMP

12C Addr:0x68, Interrupt pin: 1026

6 EEPROM 64Kbit 12C EEPROM, 12C Addr: 0x51
7 DAC Amp Mono channel Amplifier, 1025

8 IRDA receiver IRDA Reciever, 1023

9 PWM Servo 12 PWM pins by ESP32

10 3 extensions 4 Analog input, 2 Serials,

112C, 5V DC-DC Power max 3A

Block diagram for BiBoard is shown below:

IRM56384 IR Sensor

Speaker

12 x PWM

GPIO Port

Module details:

3.1 Power

MPU6050

-Iﬂgn» AT24C64 EEPROM

ESP32

25 7.4V o 12 x PWM Servo

There're 2 ways to power the BiBoard: USB 5V and battery socket 7.4V.

When using USB power, there’s no power output for DC-DC 5V extension and servo. So USB power mainly
supplies ICs.

When using battery power at 7.4V (maximum: 8.4V). Both servos and 5V power will be supplied. You can
use 5V powering the Raspberry Pi.

3.2 On board modules

3.2.0 ESP32 development environment set up
Open “Preferences” in Arduino, add ESP32 development board URL:

https://dl.espressif.com/dl/package_esp32_index.json

|m

eferences |

ettings | Network

Slrat rhhanlr Tanatian:

https://dl.espressif.com/dl/package_esp32_index.json

C:\Users'Montevina'Document s Arduine

Editer language: ;English (English) v; (requires restart of Arduino)
i N

Editor font size] (& Additional Boards Manager URLs | = |

Interface seale: Enter additional URLs, one for each row

Theme: - - = -

ttps://raw.githubusercontent . com/PetoiCanp,/OpenCat,/master/Resour i
Show werbose outp teps://files.seeedstudio. com/arduino/package seeeduino_boards in

ttps://dl.espres=sif.com/dl/package esp32 index.j=son |ﬂ
ttp://arduino.esp8266.com/atable/package_espB2é6com_index.json ~

Compiler warnings

Displajr line ' T | b
Ferif}r code a] | Click for a list of unofficial boards support URLs
Check for upd l 0K] [Cancel]

D Use accessibi

% r

Additional Boards Manmager URLs: |2 esp32_index. json http:/farduine. esp82686. com/stable/package esp828Bcom_index. json
Wore preferences can be edited direectly in the file
C:WUsers'Montevina'AppData’Local \Arduinol 5 preferences. txt

{edit only when Arduino 1s not runming)

| 0k || cancel

Save it and then exit.

Open “Boards Manager” and wait for updates from external board support links. Search “ESP32” and
download its board support package.

3 Boards Manager ﬂ

Type A1l Filter your search ..

r - s

esp32

by Espressif Systems version 1.0.4 INSTALLED

Boards included in this package:

ESP32 Dev Module, WEMOS LoLin32, WEMOS D1 MINI ESP32.
Mare Info

espB266

by ESP8266 Community version 2.7.4 INSTALLED

Boards included in this package:

Generic ESPE266 Module, Generic ESPE285 Module, ESPDuing (ESP-12 Module), Adafruit Feather HUZZAH ESPE266, Invent One,
XinaBox CWO1, ESPresso Lite 1.0, ESPresso Lite 2.0, Phoenix 1.0, Phoenix 2.0, NodeMCU 0.9 {ESP-12 Maodule]), NodeMCU 1.0
(ESP-12E Module), Olimex MOD-WIFI-ESPB266(-DEV), SparkFun ESPE266 Thing, SparkFun ESP8266 Thing Dev, SparkFun Blynk
Board, SweetPea ESP-210, LOLIN{WEMOS) D1 R2 & mini, LOLIN{WEMOS) D1 mini Pro, LOLIN(WEMOS) D1 mini Lite, WeMaos D1
R1, ESPino (ESP-12 Module), ThaiEasyElec's ESPina, WifInfo, Arduino, 4D Systems gend IoD Range, Digistump Oak, WiFiduino,
Amperka WiFi Slot, Seeed Wio Link, ESPectro Core, Schirmilabs Eduino WiFi, ITEAD Sonoff, DOIT ESP-Mx DevKit (ESPS8285).

Cnline Help
Mare Info

m. |

-

| Downloading platforms index. .. |

After shown “INSTALLED”, the BiBoard board support package is finished.

3.2.1 USB Downloader

There’s no USB circuitin the ESP32, so we use the CP2102 USB bridge as officially recommended. The
maximum download baud is 921600. The bridge is connected to seriall of the ESP32.

We use the USB Type-C port, 2 resistors CC1 and CC2 are added as the identifier.

P20

ESP_TX1 pum— 1
—ESPRXI
z GND [—= .

= 2 GND =

— =

Py)ﬂ(GND 4 GND

S| Us A1B12 USB_INPUT
A= anEeD CP2102 GND A4AB0
ZEEZF=LZ VBUS —-IAS
Lo pep e 3‘1) SBU1 M as K14

i NC - N = I]
T P Ne 7 € %1 B7_USB N 5.1KQ (5101} 1%
— Do Neve (2 A6__USB_P R
S —— o D+ M35 UsB N

c7 | D B6 USB P
Il OuF (105) 10% 25V o D+ 5% =
L SBU2 < R15
o oo ni < Lo NPUT TR,
\D_r|>_3\z . . | Vg;{g —|B1:L‘112]_ AKQ (5101) £1%
J_Cl C19 :
10uF (106) 2094 6.3V | 100aF (104) 10% 16V TypeC 16pin
= ‘CP2102 USB-TTL Bridge _T_
GND GND

We tried the automatic download circuit designed by ESP and the NodeMCU, but none of them works
perfectly. So we modified the circuit by adding the third transistor and enlarger the capacitor.

The transistors receive standard serial modem signals DTR and RTS and trigger a unique timing-sequence
forcing ESP32 into download mode and then reboot. The detail of the automatic download circuit is shown
below.

EN
o 1 '-_-R9 ' | Ql ——C11
T o .
100KQ (1003) +1% Na, SS8050 Y1 10uF (106) 20% 6.3V
" GND
RTS | R12 7 o2
rd
100KQ (1003) 1% N, SS8050 Y1
100
R13 03 |
100K (1003) 1% N, SS8050 Y1
102

3.2.2 IMU

We use Invensense MPU6050, the most widely used IMU. Its 12C address is 0x68, and DMP'’s interrupt is
connected to 1026 of the ESP32.

With the help of Jrowberg’s MPU6050 DMP library, you can easily get the motion status of the Bittle. The
Jrowberg’s MPUG6050 library must be modified to adapt ESP32. The data types of “int8” and “PGMSpace”
should be pre-defined instead of 8-bit AVR macros. We offer the modified library of MPUG050. You can
replace the original library so that both AVR boards and ESP boards would be worked normally.

3.2.3 EEPROM

There is a 64Kbit EEPROM on the BiBoard. You can directly use the EEPROM read and write a program
that is used on the Arduino UNO. You can use it to store calibration data.

There is also an example program named “EEPROM” in the ESP32 support package. This is not the demo
code of the 1I2C EEPROM. That's the demo of the simulated EEPROM by ESP32’s QSPI flash memory.
3.2.4 DAC and audio applications

We use DAC output and a class-D amplifier instead of a PWM buzzer to make Bittle more vivid. You can use
3 ways to drive the audio module:

1. Use Arduino “Tone()” function.

2. Use ESP32 “dacWrite()” function like “analogWrite()” in Arduino. The data quality produced by the DAC
is better than the PWM.

3. Use ESP MP3 decode library developed by XTronical, you can play MP3 files. You should configure a
file system like SPIFFS or FAT in the flash before you use this MP3 decoder.

URL : https://lwww.xtronical.com/basics/audio/dacs-on-esp32/

3.2.5 IR modules

The IR sensor on Nyboard and BiBoard are the same, so you can directly use the sketch from the Nyboard.
The BiBoard's flash is large enough so that you don’t have to disable macros in IRremote.h.

4, Servo sockets

There’re 12 PWM servo sockets on the BiBoard, and the pin number is marked near the socket.

We transform the direction of the PWM servo socket by 90 degrees since the size of the ESP32 module. You
should connect the wires first before you screw the BiBoard on the cage.

5. Extension sockets

There're 3 extension sockets on the BiBoard that marked with P15, P16 and P17.

5.1 Analog input sockets (P15)

https://www.xtronical.com/basics/audio/dacs-on-esp32/

This socket is used for analog input extension, you can try to connect foot press sensors to this socket.

3V3, GND Power and GND, 3.3V power comes from the LDO
SVN (36) Can be used either analog input or digital input
svp (37) 12bit SAR ADC

34 Variable gains

35

5.2 Bus extension sockets (P16)

This socket is used for bus extension of the ESP32.

3Vv3, GND Power and GND, 3.3V power comes from the LDO
12C (SCL, SDA) 12C bus extension
Seriall (TX1, RX1) Seriall of ESP32, connected to USB downloader

5.3 W% JkFEO Raspberry Pi interface

You can use this interface to connect to the Raspberry Pi, but you cannot directly mount the Raspberry Pi
above the BiBoard. Use wires or adapters instead.

GND, 5V Power and GND, 5V power comes from the DC-DC circuit. You
can connect devices that consume 15W or less power(LED or
Raspberry Pi).

Serial 2 (TX2, RX2) Serial2, you can connect it to Raspberry Pi or Li-radar

BiBoard Configuration

1. Read the user manual

Read the user manual for BiBoard Quick Start Guide.

2. Set up BiBoard

https://docs.petoi.com/biboard/biboard-v0

2.1. Add URL in Arduino->Preferences->Additional Boards Manager URLs

https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_index.js...

@ LITTLEFS test | Arduino 1.8.16
File Edit Sketch Tools Help

New Ctrl+N

Open... Ctrl+O

Open Recent

Sketchbook

Examples

Close Ctrl+W

Save Ctrl+S F5.h>

Save As... Ctrl+Shift+5S

Page Setup Ctrl+Shift+P

s | r
Print Ctrl+P - g - b
1ino—esp3Z2littlefs—pl1
Preferences Ctrl+Comma
Quit Ctrl+Q WO part itions ; YOL nDe ed to use a cust
1N S\ .1 (I S = [N N 17 AN, N S AN A N (R -
eferences X
2ttings Network
Sketchbook location:
C:'\Users'\wif-1\Docunents‘\Arduinoe | | Browse
gdi- . ' uino)
@ Additional Boards Manager URLs
Edi-
. Enter additicnal URLs, one for each row
nte
p : . githubusercontent.com/espressif/arduino-esp32/gh-pages/package esp32 index.json 2
Ther nttps://arduino.esp826€.com/stable/package_esp82€6com_index.jso
Shas
Comg
]I
A Click for a list of uncfficial boards support URLs
= :
Lt)
idditional Boards Manager URLs: Ilttps:i/raw. gi thubusercontent. comiespressifiarduino—espSE/gh—pll 1
Hore preferences can be edited directly in the file
C:\Users‘\wif—1\AppData\Local\drdulnold\preferences. txt
(edit only when Arduine is not rumning)
| 0K || Cancel

2.2.In Boards Manager, search ESP32 and install the 2.0.* version

e T o - R S Ao —

P LINILEF> _Test | Arduino 1.8.10

e Edit Sketch Tools Help

Auto Format Ctrl+T
Archive Sketch
LITTLEFS test Fix Encoding & Reload
P Manage Libraries... Ctrl+Shift+l
nciy s s E:
.l A= Serial Monitor Ctrl+Shift+M
#incll gerial plotter Ctrl+Shift+L

3 #incly

4 ESP32 Sketch Data Upload

. " WIiFi101 / WiFiNINA Firmware Updater

6 tes ESP32 Sketch Data Upload h

7 ~~~ Board: "ESP32 Dev Module” ——=== Boards Manager... _ |

0 Upload Speed: "921600" b Arduino AVR Boards >

) [f CPU Freauency: "160MHz (WiFi/BT)" E FSP22 Arduinn »
@ Boards Manager X
Type |All v | |lesp32

esp32 ~

by Espressif Systems version 2.0.2 JNSTALLED

ESP32 Dev Board, ESP32-52 De;r Board, ESP32-C3 Dev Board.

More Info

Select version v|| Install Remove
W
Close

2.3. Modify code files

Modify the following files after downloading the BiBoard package:

sdkconfig.h

@ e For Windows:
C:\Users\

ude\config\sdkconfig.h

e for Mac:

de/config/sdkconfig.h

{usernameMAppData\Local\Arduino15\packages\esp32\hardware\esp32\2.0.2\tools\sdk\esp32\incl

/Users/{username}/Library/Arduinol5/packages/esp32/hardware/esp32/2.0.2/tools/sdk/esp32/inclu

Append a line of code at the end of the file:
1 #define CONFIG_DISABLE_HAL_LOCKS 1
Or replace with BiBoard\ESP32config\sdkconfig.h.

esp32-hal-i2c-slave.c

@ e For Windows:

C:\Users\
{usernamePAppData\Local\Arduino15\packages\esp32\hardware\esp32\2.0.2\cores\esp32\esp32-
hal-i2c-slave.c with the file in this folder (BiBoard\ESP32config\esp32-hal-i2c-slave.c).

e For Mac:

/Users/{username}/Library/Arduinol5/packages/esp32/hardware/esp32/2.0.1/cores/esp32/esp32-
hal-i2c-slave.c

Replace with BiBoard\ESP32config\esp32-hal-i2c-slave.c.

2.4. Add hardware partition

Read the user manual for Add hardware partition configuration option in Arduino IDE

wduino 1.8.16 - ESP32C3 Dev Module
ols Help ESP32S2 Dev Module
Auto Format Ctri+T . ESP32 Dev Module
Archive Sketch ESP32 Wrover Module
Fix Encoding & Reload ESP32 PICO-D4
Manage Libraries... Ctrl+Shift+l ESP32S2 Native USB
Serial Monitor Ctrl+Shift+M ESP32 Wrover Kit (all versions)
Serial Plotter Ctrl+Shift+L UM TinyPICO
UM FeatherS2
ESP32 Sketch Data Upload UM FeatherS2 Neo
WiFi101 / WiFiNINA Firmware Updater UM TinyS2
ESP32 Sketch Data Upload ' S.0DI Ultrav1
microS2
Board: "ESP32 Dev Module" 3 Boards Manager... MagicBit
Upload Speed: "921600" Arduino AVR Boards Turta loT Node
CPU Frequency: "240MHz (WiFi/BT)" ESP32 Arduino TTGO LoRa32-OLED
Flash Frequency: "80MHz" ESP8266 Boards (3.0.2) TTGO T1

Flash Mode: "QIO"

Flash Size: "16MB (128Mb)"

Partition Scheme: "Biboard V0(4.5 MB APP with OTA /6.9 MB SPIFFS)"
Core Debug Level: "None"

PSRAM: "Disabled"

Arduino Runs On: "Core 1"

TTGO T7 V1.3 Mini32

TTGO T7 V1.4 Mini32

TTGO T-OI PLUS RISC-V ESP32-C3
XinaBox CW02

SparkFun ESP32 Thing

SparkFun ESP32 Thing Plus
SparkFun ESP32-S2 Thing Plus
SparkFun ESP32 MicroMod
SparkFun LoRa Gateway 1-Channe
u-blox NINA-W10 series (ESP32)
Widora AIR

Electronic SweetPeas - ESP320

L " RV

Events Run On: "Core 1"
Port
Get Board Info

Programmer ’
Burn Bootloader

2.5. Compile and upload the sketch

https://docs.petoi.com/biboard/demo-applications/13.-add-hardware-partition-configuration-option-in-arduino-ide

Modify the device type macro definition in BiBoard.ino according to the device type.

1 #define BITTLE //Petoi 9 DOF robot dog: 1 on head + 8 on leg
2 //#define NYBBLE //Petoi 11 DOF robot cat: 2 on head + 1 on tail + 8 on leg
3 //#define CUB

Modify the motherboard model macro definition in BiBoard.ino according to the motherboard model.

1 #define BiBoard //ESP32 Board with 12 channels of built-in PWM for joints
2 //#define BiBoard2 //ESP32 Board with 16 channels of PCA9685 PWM for joints

After the modification is completed, you can click the upload button to upload BiBoard.ino, and the changes
in the program will be automatically saved.

2.6. Initialization

When the newly set BiBoard is powered on, it needs to connect the serial port to the computer, and initialize
the joint and gyroscope accelerometer (IMU) in the serial port monitor window.

@ Make sure to set the serial monitor as 115200 baud rate and no line ending.

NON) /dev/cu.usbserial-0001
Send

2 Autoscroll Show timestamp No line ending 115200 baud Clear output

You will see several questions:

1 Reset the joints' calibration offsets? (Y/n):

Type ‘Y’ to the question, which means resetting all servo corrections to zero.

1 - Calibrate the Inertial Measurement Unit (IMU)? (Y/n):

Tuna V' tn thea niiactinn whirh maanc ralihratina the MPI IARNRN i a thea nvurn/arcalarnmatar ceancenr

@ Put the robot FLAT on the table and don't touch it during calibration.

The program starts calibration after playing the melody 6 times.

After the calibration, the program will enter the regular Power On routine covered in the next section.

The details of serial port printing information are as follows :

1 % Start =

2 Scanning I2C network...

3 - I2C device found at address 0x54 !

4 - I2C device found at address 0x68 !

5 - done

6 Set up the new board...

7 // The device name to use when connecting with bluetooth
8 - Name the new robot as: BittleED

9 Reset the joints' calibration offsets? (Y/n):

10 Y

12 Initializing MPU...
13 - Testing MPU connections...attempt 0

=
N
|

MPU6050 connection successful
15 - Initializing DMP...
Calibrate the Inertial Measurement Unit (IMU)? (Y/n):

[
(9]
|

19 Put the robot FLAT on the table and don't touch it during calibration.
20 - Calibrating the Inertial Measurement Unit (IMU)...

21, ®oooooooooc 20000000000

22 MPU offsets:

23 // X Accel Y Accel Z Accel X Gyro Y Gyro Z Gyro
24 //OFFSETS 3752, -968, 942, 170, 76, 21

25 - Enabling DMP...

26 - Enabling interrupt detection (Arduino external -interrupt 26)...
27 - DMP ready! Waiting for the first interrupt...

28 Bluetooth name: BittleED

29 Waiting for a client connection to notify...

30 Setup ESP32 PWM servo driver...

31 Ready!

@ The main program of Bittle judges whether it has been initialized by comparing the BIRTHMARK
in the EEPROM, and will not enter the initialization process again when itis turned on next time.

If you need to recalibrate the servo offsets or recalibrate the IMU (MPU6050), you can modify the
following configuration macro definitions in the BiBoard.ino then recompile and upload the
sketch.

1 //change this mark to any other character if you want to reset

2 //the Bluetooth name and calibration values in the EEPROM
3 #define BIRTHMARK 'x'

2.7. Power on
e If you power on the robot upside down, it will enter the calibration state:

The servos can pointin any direction when the robot is turned off. After receiving the calibration signal, all
the servos will rotate to their calibration positions (zero angles) and stop moving. We call this position Bittle's

"calibration pose". The Bittle remains in the calibrated position until the first user input (infrared, Bluetooth or
serial) is received.

Then you can attach body parts to the servos according to the calibrated position and use the ‘c’ commands
to set the fine-calibration values. Although the BiBoard has only 12 pins, the joint index numbers are

configured in the same order as the NyBoard. The connection between the joint servo and the pin is shown
in the figure below :

Sid loled
Sid !0ied

Sid lojad
Sid 10l2d

Sid !0iad
Sid l0led

o o
2 2
e e
o o
- -
7 7

Please refer to chapter 6 [Calibration and Final Assembly for the complete calibration process.

e If you power on the robot and it is upright (with its back upward), the robot will start from the "rest"
posture (fold the legs and unlock the servos).

2.8. Configuration with App

The BiBoard has built-in Bluetooth and you can connect it with the new Android app:

App for BiBoard (Android 4.4+).

You can check the update history and added features in ChangeLog.md (BiBoard\ChangeLog.md)

Demo Applications

https://bittle.petoi.com/6-calibration

1.GPIO port

Operate the GPIO port of BiBoard

There is no separate GPIO port on BiBoard, but the multiplexed serial port 2 (pin 16, 17) or the PWM pin of
the unused PWM servo interface can be used as GPIO port. The GPIO portis also relatively simple to use.
After configuring the input and output mode, the usage is exactly the same as that of Arduino UNO. You can
use any IO control program of Arduino UNO, just change the number of IO .

/* In this demo, we use TX2, RX2 as general purpose IO
* TX2 : I017

* RX2 : IO16

*/

void setup() {
// initialize digital pin 16 & 17 as an output.
pinMode (16, OUTPUT);
pinMode (17, OUTPUT);

12 // the loop function runs over and over again forever
13 void loop() {

14

15 digitalWrite(16, HIGH); // GPIO 16 & 17 HIGH
16 digitalWrite(17, HIGH);

17 delay(1000); // wait for a second
18

19 digitalWrite(16, LOW); // GPIO 16 & 17 LOW
20 digitalWrite(17, LOW);

21 delay (1000) ; // wait for a second
22 }

2.Serial port

There are 2 serial ports,which are separately located on 2 expansion sockets (P16, P17) ,on BiBoard.

The serial port 1 on the P16 can be connected to the USB downloader and the external serial device.
Please do not use the downloader and the external serial device at the same time. The serial port voltage
division will lead to communication errors.

In the Arduino demo, Serial represents the serial port 0, Seriall represents the serial port 1.Serial and
Seriall send to each other.

> 4% E3riB1%ang"SerY511%¢end 18 320 SEhaR

2
3 %/
4
5 void setup() {
6 // initialize both serial ports:
7 Serial.begin(115200);
8 Seriall.begin(115200);
9}
10
11 void loop() {
12 // read from port 1, send to port 0:
13 if (Serdiall.available()) {
14 int inByte = Seriall.read();
15 Serial.write(inByte);
16 }
17
18 // read from port 0, send to port 1:
19 if (Serial.available()) {
20 int inByte = Serial.read();
21 Seriall.write(inByte);
22}
23 }

3.Analog-digital converter

Application of ADC which is variable gain on BiBoard (ESP32)

The instructions of ADC on BiBoard

The 34, 35, 36 and 39 pins of the ESP32 module support input only. We configure it as an analog input port
on BiBoard, which makes it convenient for developers to connect 4 foot sensors.

The usage of analog input analog-to-digital converter (ADC) on BiBoard is the same as the basic Arduino
UNO, but the accuracy is higher (12 bits, UNO is 10 bits), and a programmable gain amplifier is added to
make the ADC work in the best range.

When a 1V voltage signal is input, if 12bit access is used according to the normal configuration, the
reference voltage is equal to the power supply voltage (3.3V): the corresponding outputis 0~ 1241, a large
part of the ADC range will be wasted, resulting in inaccurate data. When we configure the programmable
gain, we can make the 1V input signal fill almost the entire ADC range, and the accuracy and resolution are
greatly improved.

This demo uses 4 inputs, respectively configured as: 0/2.5/6/11 decibel amplification gain, it should be
noted that the default configuration of ESP32 Arduino is 11 decibel amplification gain.

We use "analogSetPinAttenuation(PIN_NAME, attenuation)" to configure the gain of a single input pin, or
use "analogSetAttenuation(attenuation)" to configure the gain of all analog input pins.

1 // Ain 34 - 0dB Gain - ADC_0db

2 analogSetPinAttenuation(34, ADC_0db);

3

4 // Ain 35 - 2.5dB Gain - ADC_2_5db

5 analogSetPinAttenuation(35, ADC_2_5db);

6

7 // Ain 36 - 6dB Gain - ADC_6db

8 analogSetPinAttenuation(36, ADC_edb);

9

10 // Ain 39 - 11dB Gain - ADC_11db (default)

=
=

analogSetPinAttenuation(39, ADC_11db);

In the actual test, when the 1V standard voltage is input, the ADC values are: 3850/2890/2025/1050. In
future productions, the ADC range can be changed by changing the ADC gain without the replacement of
the reference voltage source.

4.Digital-Analog Converter

The usage of DAC

The purpose of the DAC is the opposite of that of the ADC. The DAC converts a digital signal into an analog
signal for output.

Remember the music when NyBoard is turned on? Itis using PWM to make music sound which uses high-
speed switching to adjust the duty cycle to output voltage.

Compared with PWM, the DAC will directly output the voltage without calculating the duty cycle. ESP32
integrates a 2-channel 8-bit DAC with a value of 0-255. The voltage range is 0-3.3V. Therefore, the formula
for calculating the output voltage of the DAC is as follows:

DAC = (int) TargetV/3.3V %255

The demo is as follows:

1 #define DAC1 25
2
3 void setup() {

4}

5

6 void loop() {

2

8 // 8bit DAC, 255 = 3.3V, 0 = 0.0V
9 for(int i = 0; i < 255; i++){

10 dacWrite(DAC1, 1);
11 delay(10);
12 1

13 }

5.EEPROM (Electrically Erasable Programmable read only
memory)

The usage of EEPROM is the same as Arduino UNO, there are two operations: read and write.

Read:

e |2C address of EEPROM
e The internal address of EEPROM (the address for storing data)

e Read data
Write:

e |2C address of EEPROM
e The internal address of EEPROM (the address for storing data)

o \Write data

In the BiBoard demo, the address of EEPROM on the 12C bus is 0x54, and the capacity is 8192Bytes
(64Kbit). We sequentially write a total of 16 values from 0 to 15 in the EEPROM from the first address, and
then read them for comparison. Theoretically, the data written in EEPROM and the data read from the
corresponding address should be the same.

In the NyBoard factory test, we also use this method, but it is more complicated. We will use a fixed list to fill
the EEPROM and read it out for comparison.

#include <Wire.h>

1
2
3 #define EEPROM_ADDRESS 0x54

4 #define EEPROM_CAPACITY 8192 // 64Kbit
5 #define EEPROM_TESTBYTES 16

6

7 // write 1 byte EEPROM by address

8 void writeEEPROM(int deviceaddress, unsigned int eeaddress, byte data)
9 {

10 Wire.beginTransmission(deviceaddress);

11 Wire.write((int) (eeaddress >> 8)); // MSB
12 Wire.write((int) (eeaddress & OxFF)); // LSB
13 Wire.write(data);

14 Wire.endTransmission();

15

16 delay(5);

17 }

18

19 // read 1 byte EEPROM by address

20 byte readEEPROM(int deviceaddress, unsigned int eeaddress)
21 {

22 byte rdata = OxFF;

23

24 Wire.beginTransmission(deviceaddress);

25 Wire.write((int) (eeaddress >> 8)); // MSB

26 Wire.write((int) (eeaddress & OxFF)); // LSB

27 Wire.endTransmission();

28

29 Wire.requestFrom(deviceaddress,1);

30

31 if (Wire.available())

32 rdata = Wire.read();

33 return rdata;

34 }

35

36 void testI2CEEPROM(){

37

38 byte tmpData = 0;

39

40 Serial.println("EEPROM Testing...");

41

42 // write EEPROM from @ to EEPROM_TESTBYTES
43 for(int i = 0; i < EEPROM_TESTBYTES; i++){
44 writeEEPROM(EEPROM_ADDRESS, i, i % 256);
45 delay(1);

46 }

47

48 Serial.println();

49

50 // read from @ to EEPROM_TESTBYTES

51 for(int i = ©; i < EEPROM_TESTBYTES; i++){
52 tmpData = (int)readEEPROM(EEPROM_ADDRESS, 1);
53 Serial.print(tmpData);

54 Serial.print("\t");

55 }

56 }

57

58

59 void setup(){

60

61 Serial.begin(115200);
62 Wire.begin();

63

64 testI2CEEPROM() ;

65 }

66

67 void loop(){

68

69 }

Note: the EEPROM operations, especially write operations, are generally not put into the loop() loop.
Although the EEPROM is resistant to erasing (100,000 times), if a certain block is frequently written in the
loop, It will cause the EEPROM to malfunction.

6.Gyro IMU (MPU6050)

MPUG6050 is the most widely used 6-axis gyroscope, which can not only measure 3-axis angular velocity
and 3-axis acceleration more accurately, but also use the built-in digital motion processor (DMP) for
hardware based attitude fusion calculation. So novices can use it very conveniently. For this reason, we also
use MPUG050 gyroscope.

There are many demos of MPU6050 on Arduino UNO, the most famous is jrowberg's 12Cdev and
MPUG6050DMP library:

i2cdevlib/Arduino/MPUG050 at master - jrowberg/i2cdevlib
GitHub

Unfortunately, this library cannot be run directly on BiBoard based on ESP32. We found the ported library on
Github, which is easy to use. This library adds the definition of PGMSpace for the ARM and ESP series,
adds the calibration function, and removes the FIFO overflow processing function (friends who are
interested can use Beyond Compare for code comparison). The library contains 12Cdev and MPU6050, the
address and compressed package are as follows:

mpu6050/src at master - ElectronicCats/mpu6050
GitHub

mpu6050-master.zip 121KB
Binary

mpu6050-master.zip

After the download is complete, create a MPU6050 folder under Documents/Arduinol/library, and copy the
library files in the compressed package into it. The library of this modified MPU6050 is also compatible with
ARM and AVR, so if you have the original 1I2Cdev and MPUG6050 libraries in your computer, you can delete
them.

We can use the official MPU6050 DMP6 demo.

7.Infrared remote control

BiBoard is equipped with an infrared sensor, which is connected to the 23rd pin. The use of infrared is

avarths tha eama ac whirh ic nn Ardiniina I ININ hacad nn A\/D

First download the 2.6.1 version of the IRremote library, you need to manually select the 2.6.1 version.
Because the infrared-related codes have changed in later versions, if you use the 3.X version, the
commands will not be translated. In order to be compatible with our previous products, we decided to use
the 2.6.1 version after testing.

3 Library Manager L-ah

iv Topic All ¥ | | IRremote

| -~ !
| IRremote

by shirriff, z3t0 , Arminlo Version 2.6.1 INSTALLED

Send and receive infrared signals with multiple protocols Currently included protocols: Denon / Sharp, IVC, LG, NEC / Onkyo /
Apple, Panasonic / Kaseikyo, RC3, RCE, Samsung, Sony, (Pronto), BoseWave, Lego, Whynter, MagiQuest.

New: 2.x upgrade instructions

Added universal decoder for pulse width or pulse distance protocols.

For all 3.x: Generation of PWM is now done by software by default, thus saving the hardware timer and enabling abitrary output =
pins. Removed decode_results results. Renamed most irparams_struct values. The macros FEEDBACK_LED, SYSCLOCK,

SENDPIN_OM and SENDPIN_OFF are not longer used / evaluated. Major refactoring of CPU dependent and feedback LED code.
Support for more CPU's.

More info |

| IRRemoteControl

by Cristiano Borges

A lightweight library for send/ receive infra-red signal. This library seeks to be lean and intend to make it easier to
send/receive infra-rad signals. As an extra feature, the library can read codes from flash memeory.

Maore info

When using NyBoard, in order to ensure that the code can be compiled smoothly, we need to remove
unnecessary code in the IRremote library, that is, remove the encoder/decoder that we don't use, and only
keep the NEC_DECODER, which is the 38KHz signal decoder in NEC format.

Due to the flash memory capacity of BiBoard is “huge”, we don’t need to remove unnecessary code in the
IRremote library.

Maximum is 32256 bytes.
obal variable: se 439 bytes : leaving 1609 bytes for local variables.

ram storage space. Maximum is 4685824 bytes.

of dynamic memory, leaving 313520 bytes for local wvariabl

Finally, a demo is attached, which accepts infrared signals and prints via the serial port. You can also use
official demo for testing.

#include <Arduino.h>

#include <IRremote.h>

int RECV_PIN = 23;

IRrecv irrecv(RECV_PIN);

decode_results results;

O 00 N O U1

10 void setup() {

11 Serial.begin(115200);

12 irrecv.enableIRIn();

13 Serial.println("IR Receiver ready");
14 }

15

16 void loop() {

17 if (dirrecv.decode(&results)) {

18 Serial.println(results.value, HEX);

19 Serial.print(" - ");

20 irrecv.resume(); // Receive the next value
21}

22 delay(300);

23 }

8.PWM(Pulse Width Modulation)

1. The introduction of PWM function on BiBoard (ESP32)

The ESP32 used by BiBoard is different from the 328P used by UNO. Because the PWM of ESP32 uses the
matrix bus, it can be used on unspecified pins.

The PWM of ESP32 is called LED controller (LEDC). The LED PWM controller is mainly used to control
LEDs, and it can also generate PWM signals for the control of other devices. The controller has 8 timers,
corresponding to 8 high-speed channels and 8 low-speed channels, totaling 16 channels.

' Speed Mode

Y v

Timer -

A J
hJ

Channel LED

: GPIO

-
-
-
.
-

Fade Control
Interrupt

PWM Frequency
Divide Number
Duty Resolution

PWM Duty

ESP32 - LED PWM Controller

Key Settings of LED PWM Controller's API

Compared with UNO, directly use "analogWrite()" to input any duty ratio between 0-255. The PWM control of
ESP32 on BiBoard is more troublesome. The parameters that need to be controlled are as follows:

1. Manual selection of PWM channels (0-15) also improves the flexibility of the use of pins

2. The number of bits of the PWM waveform determines the resolution of the duty cycle of the PWM
waveform. The higher the number of bits, the higher the accuracy.

3. The frequency of the PWM waveform determines the speed of the PWM waveform, the higher the
frequency, the faster the speed.

The frequency of the PWM waveform and the number of bits are relative, the higher the number of bits, the
lower the frequency. The following example is quoted from the ESP32 programming manual:

For example, when the PWM frequency is 5 kHz, the maximum duty cycle resolution can be 13 bits. This
means that the duty cycle can be any value between 0 and 100%, with a resolution of ~0.012% (2 ** 13 =
8192 discrete levels of LED brightness).

The LED PWM controller can be used to generate high-frequency signals, enough to clock other devices
such as digital camera modules. Here the maximum frequency can be 40 MHz, and the duty cycle resolution
is 1 bit. In other words, the duty cycle is fixed at 50% and cannot be adjusted.

The LED PWM controller API can report an error when the set frequency and duty cycle resolution exceed
the hardware range of the LED PWM controller. For example, if you try to set the frequency to 20 MHz and
the duty cycle resolution to 3 bits, an error will be reported on the serial port monitor.

2. Configure the PWM frequency on BiBoard in Arduinoin Arduino
As shown above, we need to configure the channel, frequency and number of bits, and select the output pin.

Step 1: Configure the PWM controller

1 const int freq = 5000; // PWM frequency
2 const int ledcChannel = 0; // ledc channel, 0-15
3 const int resolution = 8; // resolution of PWM, 8bit (0~ 255)

4 ledcSetup(ledcChannel, freq, resolution);

Step 2: Configure the PWM output pins

1 ledcAttachPin(ledPin, ledcChannel);

Step 3: Output PWM waveform

1 ledcWrite(ledcChannel, dutyCycle);

In the demo, we choose 102 as the output pin, connect |02 to an LED, and you can observe the effect of the

CR T N IR N B R

3. Complete code:

/* In this demo, we show how to use PWM 1in BiBoard(ESP32)
* It's different from the Arduino UNO based on the ATMega328P

*/

// define the PWM pin
const int ledPin = 2; // 16 corresponds to GPIO16

// setting PWM properties

const int freq = 5000; // PWM frequency

const int ledcChannel = 0; // ledc channel, 1in ESP32 there're 16 ledc(PWM) channels
const int resolution = 8; // resolution of PWM

O© 0o N o uu b W N

[O S
w N B o

void setup(){

=
N

// configure ledc functionalitites

=
S]]

// channels 0-15, resolution 1-16 bits, freq limits depend on resolution
// ledcSetup(uint8_t channel, uint32_t freq, uint8_t resolution_bits);
ledcSetup (ledcChannel, freq, resolution);

o T =R
© 0 N O

// attach the channel to the GPIO to be controlled
ledcAttachPin(ledPin, ledcChannel);

N N NN
w N B o
—

void loop(){
// increase the LED brightness
for(int dutyCycle = 0; dutyCycle <= 255; dutyCycle++){
// changing the LED brightness with PWM
ledcWrite(ledcChannel, dutyCycle);
delay(15);

w W NN NN NN
H ® O 0 N o U »
&)

// decrease the LED brightness

for (int dutyCycle = 255; dutyCycle >= 0; dutyCycle--){
// changing the LED brightness with PWM
ledcWrite(ledcChannel, dutyCycle);

w
N
|

w w
A W

35 delay(15);
36 }
37 }

9.Servo(under construction)

10.Classic Bluetooth serial port SPP

The sample code mainly demonstrates the mutual forwarding of information between the Bluetooth serial
port and the serial port, which is derived from the official demo of ESP32, which is simple and easy to
understand. So the description mainly explains the concepts that appear in the code.

1. Bluetooth protocol

At present, the main Bluetooth protocols are divided into two categories, traditional Bluetooth (HS/BR/EDR)
based on RFCOMM and Bluetooth low energy (BLE) based on GATT.

Traditional Bluetooth is faster and has many specific application protocols, such as audio-oriented A2DP,
Bluetooth serial port SPP, etc. However, the power consumption is high, and access to Apple devices
requires MFi (Made For iOS) chips and certification.

Bluetooth Low Energy (BLE) can define various GATT profiles by itself, and it is also equipped with
commonly used profiles (such as device information, battery, etc.). It has low power consumption and is
widely used. It can be used on Apple devices. The disadvantages is thatitis slower than traditional
Bluetooth. Bluetooth low energy is mostly used on devices with low data volume but sensitive to power
consumption, such as bracelets/smart watches/beacons.

2. Classic Bluetooth serial port (SPP)

This demo uses the SPP protocol based on traditional Bluetooth, which comes with all serial port protocols.
When the computer or Android phone is connected and paired, a serial port number will be automatically
generated in the system for communication, and the experience is not much different from that of a normal
wired serial port.

1 //This example code is in the Public Domain (or CCO licensed, at your option.)

2 //By Evandro Copercini - 2018

3//

4 [/This example creates a bridge between Serial and Classical Bluetooth (SPP)

5 //and also demonstrate that SerialBT have the same functionalities of a normal Serial
6

7 #include "BluetoothSerial.h"

8

9 #if !defined(CONFIG_BT_ENABLED) || !defined(CONFIG_BLUEDROID_ENABLED)

10 #error Bluetooth is not enabled! Please run "make menuconfig® to and enable it
11 #endif

12

13 BluetoothSerial SerialBT;

14

15 void setup() {

16 Serial.begin(115200);

17 SerialBT.begin("BTSPP_Test"); //Bluetooth device name
18 Serial.println("The device started,");

19 Serial.println("Now you can pair it with bluetooth!");

20 }

21

22 void loop() {

22 if (Serijal.available()) {

24 SerialBT.write(Serial.read());
25 }

26 if (SerialBT.available()) {

27 Serial.write(SerialBT.read());
28 }

29 delay(20);

30 }

The bluetooth low energy serial port will be demonstrated in the next chapter. In essence, itis a profile
configured with a serial port and requires host software support.

11.Bluetooth low energy (BLE) serial port pass-through

Bluetooth Low Energy (BLE, Bluetooth Low Energy) serial port pass-through is widely used. On Apple's iOS
platform, Classic Bluetooth requires MFi certification to connect with Apple's iOS devices. The Bluetooth low
energy device does not have this restriction.

The protocol stack and principle of Bluetooth low energy will not be repeated here, there are many related
articles and videos. In short, the bluetooth service is provided in the form of a profile, and there are N
characters with independent IDs (UUID) under the profile of each service. Each character has different
permissions (read, write, notify, indicate). After the user defines the character and combines it with the
authority, a complete service can be provided.

What BLE pass-through is actually to establish a BLE Service, and there are 2 characters under this profile.

1 #define SERVICE_UUID "6E400001-B5A3-F393-EQA9-E50E24DCCA9E" // UART service UUID
2 #define CHARACTERISTIC_UUID_RX "6E400002-B5A3-F393-EOA9-E50E24DCCASE"
3 #define CHARACTERISTIC_UUID_TX "6E400003-B5A3-F393-EOA9-E50E24DCCA9E"

One for TX (transmit data) and one for RX (receive data). For this they have different permissions. The
following code is to create a new service and character:

1 // Create the BLE Service

2 BLEService *pService = pServer->createService(SERVICE_UUID);

3

4 // Create a BLE Characteristic

5 pTxCharacteristic = pService->createCharacteristic(

6 CHARACTERT:
7 BLECharact:
8)5

9

10 pTxCharacteristic->addDescriptor(new BLE2902());

11

12 BLECharacteristic * pRxCharacteristic = pService->createCharacteristic(

13 Cl
14 BL

[
(6}

)5

Next are two callback functions, which are performed when there is a connection and when there is a write
RX character:

1 class MyServerCallbacks: public BLEServerCallbacks {

2 void onConnect(BLEServerx pServer) {

3 deviceConnected = true;

4 }s

5

6 void onDisconnect(BLEServerx pServer) {

7 deviceConnected = false;

8 }

9 1;

10

11 class MyCallbacks: public BLECharacteristicCallbacks {
12 void onWrite(BLECharacteristic *pCharacteristic) {
13 std::string rxValue = pCharacteristic->getValue();
14

15 if (rxvValue.length() > 0) {

16 Serial.println("xx**xxxxxx");

17 Serial.print("Received Value: ");

18 for (int i = 0; i < rxValue.length(); i++)

19 Serial.print(rxValue[i]);
20
21 Serial.println();
22 Serial.println("xxxxxxxxx'") 3
23 }
24 }
25 };

Finally, the main loop is the control of the connection, which determines whether there is a connection and
whether itis disconnected.

1 if (deviceConnected) {

2 pTxCharacteristic->setValue(&txValue, 1);

3 pTxCharacteristic->notify();

4 txValue++;

5 delay(10); // bluetooth stack will go into congestion, if too many pac
6 }

7

8 // disconnecting

9 if (!deviceConnected && oldDeviceConnected) {

10 delay(500); // give the bluetooth stack the chance to get things ready
11 pServer->startAdvertising(); // restart advertising

12 Serial.println("start advertising");

13 oldDeviceConnected = deviceConnected;

14 }

15 // connecting

16 if (deviceConnected && !oldDeviceConnected) {

17 // do stuff here on connecting

18 oldDeviceConnected = deviceConnected;

19 }

For the complete code, see the example of the official library: ble_uart, and the debugging tool can use
LightBlue.

12.File system SPIFFS

ESP32 File System SPIFFS Configuration Guide

1. Why use a file system

On BiBoard (ESP32), in addition to the regular program area and boot area, we use the file system in the
Flash partition.

The role of a file system with independent partitions is as follows:

Save the data at the specified address and will not be deleted due to re-update (such as calibration
data, gait data)

No external SD card needed, saving hardware resources

Save HTML and CSS files to build a web server

Save images, audio and other files

Common file systems include Windows NTFS, exFAT, and Linux log file systems Ext and XFS. Butin the
embedded field, these large file systems are too large. We use the lightweight SPIFFS (SPI Flash File
System), an embedded file system for SPI NOR flash devices, and support functions such as wear leveling
and file system consistency checking.

Because of its light weight, the biggest feature of SPIFFS is that it does not support tree directories, that s,
all files are stored in the same layer. SPIFFS provided by ESP32 has the following features:

e Currently, SPIFFS does not support directories, it produces a flat structure. If SPIFFS is mounted under
[spiffs, then creating a file with the path /spiffs/tmp/myfile.txt will create a file called /tmp/myfile.txt in
SPIFFS, instead of myfile.txt in the directory /spiffs/tmp.

e |tis not a real-time stack. One write operation might take much longer than another.

e For now, it does not detect or handle bad blocks.

2. Install the Arduino ESP32 file system uploader

You can create/save and delete files with your own Arduino code, but the operation is cumbersome. You
need to put data or even binary files into Arduino Sketch and create files by running the program.

However, there is a very useful tool that can directly upload files from the computer to the file system.
Although itis slightly more troublesome than the "drag-and-drop" copy of the "removable storage", whether it

https://randomnerdtutorials.com/esp32-web-server-spiffs-spi-flash-file-system/
https://randomnerdtutorials.com/display-images-esp32-esp8266-web-server/

is MP3 audio or HTML web files, all can be easily uploaded to flash memory. Let's learn how to use this

pluain.

3. Install ESP32 file upload plugin

3.1 Preparing the Environment

Please install the latest Arduino IDE and the ESP32 support package of Arduino IDE (refer to the
instructions).

3.2 Download the ESP32FS plugin

Download the compressed package of the ESP32FS plug-in at:

Releases - me-no-dev/arduino-esp32fs-plugin
GitHub

1.0

0 278ffae

Release for esptool_py

B me-no-dev released this on Jan 15

Verified
o Updates the path to esptool to work with the latest Arduino for ESP32

w Assets 3

G ESP32F5-1.0.zip
] Source code (zip)

[E] source code (tar.gz)
Download ESP32 SPIFFS file system upload plug-in for Arduino IDE

Go to the Arduino IDE directory and open the "Tools" folder.

» arduino-1.8.5 » tools

Use Arduino IDE to install ESP32 SPIFFS file system upload plug-in

Unzip the downloaded .zip folder to the Tools folder. You should have a similar folder structure :

<home_dir>/ Arduino- <version>/ tools / ESP32FS / tool / esp32fs.jar

[L= | toal =

Hame Shate View

* U &4 ot | x __II TH Mew rtem = |i-| flopen - B setectan
W= Copy path * ¥ | Easy access = Edit | Select none
Pan Ra Quitk Capy Paste Mave Capy Delete Fename Mew Praperties

BrCESS |_"J Paste sharteut to to falder

i | Clr-c“".r i Dpen Select
- v ’1‘| » ThisPC » Desktop = ardusng-1.83 » tools » ESPE2FS » tool I v O

£ Hiztasy :“ It selection

Search tool O

Hame LiarE Mcane=n Iype NIE

s Quick access

£ esp32fsjar S/30/2007 703 PM Executable har File BKB
B Decictop o el : :

Use Arduino IDE to install ESP32 SPIFFS file system upload plug-in

Finally, restart the Arduino IDE.

To check whether the plug-in has been successfully installed, open the Arduino IDE. Select your ESP32
development board, go to "Tools", and then check if there is an "ESP32 Sketch Data Upload" option.

Tools Help

Auto Format Ctrl+T
Archive Sketch

Fix Encoding & Reload

Senal Monitor Ctrl+Shift+M
Serial Plotter Ctrl+Shift+L

ESP32 Sketch Data Upload
—
WIFI101 Firmware Updater

Board: "DOIT ESP32 DEVKIT V1" >
Flash Frequency: "80MHz" >
Upload Speed: "921600" >
Core Debug Level: "Mone" >
Port: "COMT7" >

Get Board Info

Programmer: "AVRISP mkll" >

Burn Bootloader

ESP32 Sketch Data Upload in Arduino IDE

4. Upload files using the file system uploader

To upload files to the ESP32 file system, follow the steps below:

e Create an Arduino project and save

e To open the project directory, you can use the "Sketch-Show Sketch Folder" option

€% Test | Arduino 1.8.5 - O *
File Edit Sketch Tools Help

Werify/Compile Ctrl+R
Upload Ctrl+U
Test Upload Using Programmer Ctrl+Shift+U
void s9 Export compiled Binary Ctrl+Alt+5
I
Show Sketch Folder Ctrl+K I
! Include Library #
void 1o Add File...
S/ put your main code here, to run repeatedly:

Arduino IDE displays Sketch folder to create data folder

e Inside this folder, create a new folder named "data"

v v’

data Testino

"data" folder in the project directory

¢ In the "data" folder, you should put the file which you want to save into the ESP32 file system. For
example, create a .txt file that contains some text named "test_example".

" test_example.tit - Notepad — O x

File Edit Format View Help
This is just some sample text to test the E5P32 Filesystem.|

Create test sample file with Notepad
e Please go to Tools> ESP32 Sketch Data Upload in Arduino IDE

Tools | Help
| Auto Format Ctrl+T
Archive Sketch
Fix Encoding & Reload
Serial Menitor Ctrl+Shift+M
Serial Plotter Ctrl+Shift+L

|

E5SP32 Sketch Data Upload
WiFI101 Firmware Updater

Board: "DOIT ESP32 DEVEIT V1" » i
Flash Frequency: "80MHz" >
Upload Speed: "921600" >
Core Debug Level: "Mone" >
Port: "COMT" »

Get Board Info

Pregrammer: "AVRISP mikll" >

Burn Bootloader

ESP32 Sketch Data Upload in Arduino IDE

When you see the "SPIFFS Image Uploaded" message, the file has been successfully uploaded to the
ESP32 file system.

Leaving...

Hard resetting...

DOIT ESP32 DEVKIT W1, BOMH=z, 921800, None on COM7T

5. Demo of how to use the file system

The demo of the file system comes from the official ESP32 without modification. The code implements the
basic operation of "addition, deletion, modification, and check", and provides a SPI flash IO test program.

If necessary, itis recommended to directly use the code of the demo to operate ESP32 SPIFFS.

13. Add hardware partition configuration option in Arduino IDE

The flash memory of the ESP32 board has 16M, and the range of the storage address expressed in
hexadecimal is: 0x0-0x01000000.

This is the partition table that has been configured by the system, as shown in the figure below:

Name, Type, SubType, O0ffset, Size, Flags

nvs, data, nvs, 0x2000, 0x5000,
otadata, data, ota, Oxe000, 0x2000,
appl, app, ota 0, O0x10000, 0x480000,
appl, app, ota 1, 0x490000, 0x480000,

spiffs, data, spiffs, 0x%10000,0x6F0000,

The storage location of this partition table file on the computer:

C:\Users\
{YourUserNamePNAppData\Local\Arduinol5\packages\esp32\hardware\esp32\2.0.*\tools\partitions\large_spi
ffs_16MB.csv

It can be seen from the above partition table: APPO area and APP1 area are 4.5M each; the data area is
SPIFFS, the size is 6.9M.

Butin the Arduino IDE, this configuration is not included in the hardware partition configuration options of
the ESP32 Dev Module:

Board: "ESP32 Dev Module® 3
Upload Speed: "921600" »
CPU Frequency: "240MHz (WiFi/BT)" »
Flash Frequency: "B0MHz" 3
Flash Made: "QIO" 3
Flash Size: "16MB (128Mb)" 2
Partition Scheme: "Default 4MB with spiffs (1.2ZMB APP/1.5MB SPIFFS)" V @ Default 4MB with spiffs (1.2MB APP/1.5MB SPIFFS)

1 Default 4AMB with ffat (1.2MB APP/1.5MB FATFS)

I

PSRAM: "Disabled" 8M Flash (3MB APP/1.5ME FAT)

Core Debug Level: "None"

Port ' Nimmal [L3MEB APF/ FOUKE SPLFFS)

Get Board Info No OTA (2MB APP/2ME SPIFFS)

No OTA (IMB APP/3MEB SPIFFS)

No OTA (2ZMEB APP/ZME FATFS)

No OTA (1IMB APP/3ME FATFS)

Huge APP (3MB No OTA/1ME SPIFFS)

Minimal SPIFFS (1.9MB APP with OTA/190KB SPIFFS)
16M Flash (2MB APP/12.5MB FAT)

16M Flash (3MB APP/9MB FATFS)

Programmer '

Burn Bootloader

We need to add this configuration to the ESP32 Dev Module.
Open the development board configuration file:
C:\Users\{YourUserNamepAppData\Local\Arduinol5\packages\esp32\hardware\esp32\2.0.*\boards.txt

Locate the name of the development board: esp32.name=ESP32 Dev Module, as shown in the figure below:

5p32.name=ESP32 Dev Module

s5p32.upload.tool=esptool py
sp32.upload.maximum size=1310720
sp32.upload.maximum data size=327680
sp32.upload.wait for upload port=true

sp32.serial.disableDTR=true
sp32.serial.disableRTS=true

sp32.build.mcu=esp32
sp32.build.core=esp32
sp32.build.variant=esp32
s5p32.build.board=ESP32 DEV

sp32.build.f cpu=240000000L
sp32.build.flash size=4MB
sp32.build.flash freg=40m
s5p32.build.flash mode=dio
sp32.build.boot=dio
sp32.build.partitions=default
sp32.build.defines=

sp32.menu.PSRAM.disabled=Disabled

sp32.menu.PSRAM.disabled.build.defines=

5p32.menu.PSRAM.enabled=Enabled
sp32.menu.PSRAM.enabled.build.defines=-DBOARD HAS PSRAM -mfix-esp32-psram-cache-issue

sp32.menu.PartitionScheme.default=Default 4MB with spiffs (1.2MB APP/1.5MB SPIFFS)
sp32.menu.PartitionScheme.default.build.partitions=default
sp32.menu.PartitionScheme.defaultffat=Default 4MB with ffat (1.2MB APP/1.5MB FATFS)
sp32.menu.PartitionScheme.defaultffat.build.partitions=default ffat
s5p32.menu.PartitionScheme.default 8MB=8M Flash (3MB APP/1.5MB FAT)
sp32.menu.PartitionScheme.default 8MB.build.partitions=default 8MB
sp32.menu.PartitionScheme.default 8MB.upload.maximum size=3342336
sp32.menu.PartitionScheme.minimal=Minimal (1.3MB APP/700KB SPIFFS)
sp32.menu.PartitionScheme.minimal.build.partitions=minimal
sp32.menu.PartitionScheme.no ota=No OTA (2MB APP/2MB SPIFFS)
sp32.menu.PartitionScheme.no ota.build.partitions=no ota
sp32.menu.PartitionScheme.no ota.upload.maximum size=2097152
sp32.menu.PartitionScheme.noota 3g=No OTA (1MB APP/3MB SPIFFS)
sp32.menu.PartitionScheme.nocota 3g.build.partitions=noota 3g
sp32.menu.PartitionScheme.noota 3g.upload.maximum size=1048576
sp32.menu.PartitionScheme.noota ffat=No OTA (2MB APP/2ZMB FATFS)
sp32.menu.PartitionScheme.noota ffat.build.partitions=noota ffat
sp32.menu.PartitionScheme.noota ffat.upload.maximum size=2097152
5p32.menu.Partitionscheme.noota 3gffat=No OTA (1MB APP/3MB FATFS)
sp32.menu.PartitionScheme.noota 3gffat.build.partitions=noota 3gffat

sp32.menu.PartitionScheme.noota 3gffat.upload.maximum size=1048576
237 mannn DartitisanSrhaema hiioe arnn=Hnae ADD (IMRBR Na ATRA/TMR SDTERSY

e R AL IILA L AL b b IS Ll @ lilifhe SARA LLLAMfh £RL L | wdid AN A Lag 4luid AL L Ladg

sp32.menu.PartitionScheme.huge app.build.partitions=huge app
sp32.menu.PartitionScheme.huge app.upload.maximum s5ize=3145728
sp32.menu.PartitionScheme.min spiffs=Minimal SPIFFS (1.SMB APP with OTA/190KB SPIFFS)
sp32.menu.PartitionScheme.min spiffs.build.partitions=min spiffs
sp32.menu.PartitionScheme.min spiffs.upload.maximum size=1966080
sp32.menu.PartitionScheme.fatflash=16M Flash (2MB APP/12.5MB FAT)
sp32.menu.PartitionScheme.fatflash.build.partitions=£ffat
sp32.menu.PartitionScheme.fatflash.upload.maximum size=2097152
sp32.menu.PartitionScheme.app3M fat9M leMB=16M Flash (3MB APP/9MB FATFS)
5p32.menu.PartitionScheme.app3M fat9M 16MB.build.partitions=app3M fat9M 16MB
5p32.menu.PartitionScheme.app3M_fat9M_16MB.upload.maximum;size=314572d

The last line of the ESP32 Dev Module partition configuration in this configuration file is:

1 esp32.menu.PartitionScheme.app3M_fat9M_16MB.upload.maximum_size=3145728

Add the following 3 lines of code below this line:

1 esp32.menu.PartitionScheme.large_spiffs=Biboard VO(4.5 MB APP with OTA /6.9 MB SPIFFS)
2 esp32.menu.PartitionScheme.large_spiffs.build.partitions=1large_spiffs_16MB
3 esp32.menu.PartitionScheme.large_spiffs.upload.maximum_size=4685824

The following explains the meaning of the three lines of code:

1 esp32.menu.PartitionScheme.large_spiffs=Biboard VO(4.5 MB APP with OTA /6.9 MB SPIFFS)

The name of the ESP32 partition configuration, we named it Biboard VO (4.5M APP with OTA /6.9 MB
SPIFFS), or it can be replaced with other names you are familiar with.

1 esp32.menu.PartitionScheme.large_spiffs.build.partitions=1large_spiffs_16MB

The partition configuration file information is the file large_spiffs_16MB.csv . You can also write a partition
file to adjust the file size of the APP and data area.

1 esp32.menu.PartitionScheme.large_spiffs.upload.maximum_size=4685824

This line of code specifies that the maximum upload program size is 4685824 bytes.
Let's try to compile a simple program to test whether the above configuration is set successfully.

Reopen the Arduino IDE, we can see the Biboard just configured:

) ASCIITable | Arduino 1.813 S RS

ile Edit Sketch [Tools| Help

Auto Format Ctrl+T
Archive Sketch

Fix Encoding & Reload

ASCITable

1 7 Manage Libraries... Ctrl+Shift+1

Serial Monitor Ctrl+5Shift+M
2 Fig: Serial Plotter Ctrl+Shift+L
3 ESP32 Sketch Data Upload

WiFi101 / WiFINIMNA Firmware Updater

n

5

O oo

Board: "ESP32 Dev Module®
Upload Speed: "921600"

CPU Frequency: "240MHz (WiFi/BT)"
Flash Frequency: "80MHz"

Flash Mode: "QIO"

Flash Size: "16MB (128Mb)"
Partition Scheme: "Biboard VO(4.5 MB APP with OTA /6.9 MB SPIFFS)"
Core Debug Level: "None”

PSRAM: "Disabled”

Port: "COM14"

Get Board Info

Default 4MB with spiffs (1.2ZMB APP/1.5MB SPIFFS)
Default 4MB with ffat (1.2MB APP/1.5MB FATFS)
8M Flash (3ME APP/1.5MB FAT)

Minimal (1.3MB APP/700KE SPIFFS)

No OTA (2MBE APP/2ME SPIFFS)

MNo OTA (IMB APP/3ME SPIFFS)

— Programmer [

1./ No OTA (2MB APP/2MB FATFS)
Burn Bootloader

- No OTA (1IMB APP/3ME FATFS)
- Huge APP (3MB No OTA/IME SPIFFS)
1 __l Minimal SPIFFS (L9MB APP with OTA/190KB SPIFFS)

16M Flash (2ZMB APP/12.5MB FAT)

5

4 16M Flash (3MB APP/IMB FATFS)

© Biboard V0(4.5 MB APP with OTA /6.9 MB SPIFFS)

5

After compiling the program, the result is as shown in the figure below:

C:\\Users\\Montevina\\AppDatal\Local\\Arduinol5\\packages\\esp32\\tools\\xtensa-e

ketch uses 213509 bytes (4%) of program storage Maximum is 4685824 bytes.

tlobal variables use 15380 bytes (4%) of dynamic memory, leaving 312300 bytes for

Compilation is complete, using 213KB of Flash (4%), and the maximum usable size is 4,685,824 bytes.
In this passage , “4685824 bytes” is specified in the third line of code just added to the configuration file.

So far you have completed the configuration of the development board with the largest flash memory space
in Arduino IDE.

14.The usage of Wi-Fi OTA(Over-The-Air)

1. What is OTA?

The configuration of our BiBoard is 16 MB Flash, and the specific partitions are as follows:

APP1 APP2 SPIFFS data
4.8MB 4.8MB 6.9VB

ESP32 Flash Partition

OTA mainly operates OTA data areas, namely APP1 and APP2 areas. The principle is:

e BiBoard runs the firmware with OTA function, at this time, the boot points to the APP1 area.

® The OTA command is sentto ESP32 via Wi-Fi, and the binary file of the upgrade program is transferred
to the APP2 area.

¢ |f the transmission of APP2 is completed and the verification is successful, OTAdata points to the APP2
area, and the next time it starts from the updated firmware area (APP2), the APP1 data is retained. Next
time, OTA will write to APP1 area to overwrite the old firmware.

¢ If the transmission of APP2 is not completed due to a network transmission error, because APP2 has not
passed the verification, OTAdata does not point to the APP2 area. The program in the APP1 area will
still be executed after the reset is started, and the damaged APP2 area will be completely erased and
overwritten during the next OTA.

OTA operation in Arduino program

In the demo, first configure WiFi, and configure the WiFi mode as STA (Station, base station mode). Enable
the WiFi function and pass in the account password "WiFi.begin(ssid, password);"

1 Serial.println("Booting");

2 WiFi.mode (WIFI_STA);

3 WiFi.begin(ssid, password);

4 while (WiFi.waitForConnectResult() != WL_CONNECTED) {
5 Serial.println("Connection Failed! Rebooting...");
6 delay (5000) ;

-

ESP.restart();

When the Wi-Fi is successfully connected, the IP address will be printed via the serial port; if the connection
is wrong, the ESP32 will restart.

) COM14 ‘l =AREN X

:5t:0x1 (POWERON RESET),boot:0xlb (SPI FAST FLASH BOOT)
:onfigsip: 0, SPIWP:Oxee

:1k drv:0x00,qg drv:0x00,d drv:0x00,cs0 drv:0x00,hd drv:0x00,wp drv:0x00
1w0de:DIO, clock div:1

.0ad:0x3f£f£f0018,1len:4

0ad:0x3fff001c,len:1216

o 0 tail 12 room 4

.0ad:0x40078000,1en:9720

o 0 tail 12 room 4

.0ad:0x40080400,1en:6352

:ntry 0x400806b8

looting

leady

‘P address: 192.168.1.178

Eﬁutoscroll |:|Show timestamp :No line ending v: :115200 baud v: Clear output

In the demo, you can configure the port number, the OTA key or the hash of the key, and the area and type of
the OTA (commented by default).

1 // Port defaults to 3232

2 // ArduinoOTA.setPort(3232);

3

4 // Hostname defaults to esp3232-[MAC]

5 // ArduinoOTA.setHostname ("myesp32");

6

7 // No authentication by default

8 // ArduinoOTA.setPassword("admin");

9

10 // Password can be set with it's md5 value as well
11 // MD5(admin) = 21232f297a57a5a743894a0e4a801fc3
12 // ArduinoOTA.setPasswordHash("21232f297a57a5a743894a0e4a801fc3");

The following are several code snippets similar to callback functions, which are used to judge the state of
each stage of OTA.

1 ArduinoOTA

2 .onStart([]1() {

3 String type;

4 if (ArduinoOTA.getCommand() == U_FLASH)

5 type = "sketch";

6 else // U_SPIFFS

7 type = "filesystem";

8

9 // NOTE: 1if updating SPIFFS this would be the place to unmount SPIFFS using SPIFFS.e
10 Serial.println("Start updating " + type);

11 B

12 .onEnd([]1() {

13 Serial.println("\nEnd");

14 i)

15 .onProgress([] (unsigned int progress, unsigned int total) {

16 Serial.printf("Progress: %u%%\r", (progress / (total / 100)));

17)

18 .onError([](ota_error_t error) {

19 Serial.printf("Error[%u]: ", error);
20 if (error == OTA_AUTH_ERROR) Serial.println("Auth Failed");
21 else if (error == OTA_BEGIN_ERROR) Serial.println("Begin Failed");
22 else if (error == OTA_CONNECT_ERROR) Serial.println("Connect Failed");
23 else if (error == OTA_RECEIVE_ERROR) Serial.println("Receive Failed");
24 else if (error == OTA_END_ERROR) Serial.println("End Failed");
25 3
26

27 ArduinoOTA.begin();

After configuring according to the demo, call "ArduinoOTA.handle();" in the loop function. The following
analogWrite function is to distinguish the effects of different firmware updates (by changing the value).

void loop() {
ArduinoOTA.handle();
analogWrite(2, 127); // test OTA firmware

The first time you use the serial port to download, the python tool "esptool” is called. You can use OTA after
the download is complete. In the port options, you will find an extra port based on the IP address, which is
the OTA address.

no 1.8.13 - - - “
fools| Help

Auto Format Ctrl+T

Archive Sketch

Fix Encoding & Reload

Manage Libraries... Ctrl+Shift+1
Serial Monitor Ctrl+Shift+ M
Serial Plotter Ctrl+Shift+L

WiF101 / WiFININA Firmware Updater

Board: "ESP32 Dev Module” 3

Upload Speed: "921600" 3

CPU Frequency: "240MHz (WiFi/BT)" 3

Flash Frequency: "80MHz" 3

Flash Mode: "QIO" 3

Flash Size: "16MEB (128Mb)" 4

Partition Scheme: "Biboard V0(4.5 MB APP with OTA /6.9 MB SPIFFS)" 3

Core Debug Level: "Maone” 3

PSRAM: "Disabled" 3

Port: "COM14" [Serial ports
Get Board Info com1
Programmer ' ¥ | contis
Burn Bootloader Network ports

esp32-eBdbB41ccd3c at 192.168.1.178 (ESP32 Dev Module)
LEDPinSetup() {

Select this address, the lower right corner is the IP address of ESP32 Dev Module on your BiBoard
(192.168.1.178)

ESP32 Dev Module on 192.168.1.172

Atthe same time, a warning will pop up: "Serial monitor is not supported on network ports such as
192.168.1.178 for the ESP32 Dev Module in this release”.

The ESP32 OTA of Arduino is only suitable for updating the program and cannot complete the serial port
debugging work. If you need to debug BiBoard, please connect the USB-C interface.

Download the program, as shown in the figure.

N
Modules

USB Downloader (CH340C)

Introduction

The Nyboard V1 used by Bittle uses the Atmel ATMEGA328P controller, which only supports only one serial
port. We separate the serial port of Nyboard to support more modules. The pins of the serial port are
compatible with the 6-pin Arduino Pro Mini. Pin definitions are shown in the table below:

Pin No. Name Usage

Modem signal DTR , reset

1 DTR NyBoard after serial download
finished.

2 RX ATMEGA328P RX (receive)

3 TX ATMEGA328P TX (send)

4 5V 5V power for MCU and chips

5 GND Ground

6 GND Gron

The default serial baud rate is 115200bps.

There're 3 communication modules for the NyBoard V1:

e USB downloader
e ESP8266 WiFi module
e Bluetooth dual mode (EDR & BLE) JDY-23

USB Downloader

The module uses CH340C USB bridge. Windows10, Linux and MacOS are all drive-free.

I e A AL W e =R A s S I

B\ 5 T8N M

. § ﬁ L ﬁﬁﬂ%)%&ﬁ%)wf

28| A B
: §§
Liiiie ..
2 ; : N :
pa— _r - E c3 NyBoard 2 ‘,I\Jy‘bga;td,?ﬁ'@ H """""

b5 & O ~I "NDGND+5V TX RX DT"
cz2C1

1
H L_.__—..___‘ — —

Insert the 6-pin(H1) to the NyBoard's downloader and then connect the module with the Micro-USB cable in
the package to your PC. Open the Arduino IDE and select the corresponding COM port. You can download
the programme and communicate with the NyBoard.

Another usage of the downloader is update the WiFi and bluetooth module's firmware. Plug the module in
the female 6-pin socket. We changed the TX and RX pin and make one GND pin to the DTR to reset the
WiFi module. The details are written in the chapter of the WiFi and bluetooth manual.

Do not plug the NyBoard and the module at the same time! That will make a mistake.

Bluetooth Dual Mode

Bluetooth Module

The Bluetooth module is a standard transparent transmission module, which sends serial port data to
devices connected to Bluetooth.

Insert the Bluetooth module into the Nyboard downloader socket and open the serial downloader to search
for the Bluetooth signal of Bittle-xxxx (random number). The default password for pairing is “1234” or “0000”
(for the convenience of connection, the default password for the newer version is set to “0000”). Please enter
the password before pairing. After the pairing is successful, the system will assign a serial port number, and
you can select the corresponding serial port number on the Arduino.

For Win10 users, the system will assign the "incoming” COM port and the "outgoing” COM port to Bluetooth,
please use the "outgoing” COM port. For details, please check in the "Bluetooth Settings" of Win10.

If you want to use the BLE connection, please scan and connect to BittleBLE-xxxx (random number), and
you can use the Lightblue or other tools to communicate with the Bittle.

If you want to configure the Bluetooth module, please refer to "JDY-23 AT Command List". Plug the
Bluetooth module into the USB communication module debugging interface. The commonly used
commands are listed below:

Usage

Check BT module version

Check BT broadcast name

Change BT broadcast name

Check serial baud rate

Change serial baud rate

(EETR~T (2D
U SRR
K. AR

...... @g@

Command

AT+VER

AT+NAME

AT+NAME(%&)

AT+BAUD

AT+BAUD

Demo

AT+VER
>+VER=JDY-23A-
V2.21,Bluetooth V3.0+BLE

(BT module version
infomation)

AT+NAME
>+NAME=BITTLE

AT+NAMEPiggy
>+0K
AT+NAME
>+NAME=Piggy

AT+BAUD
>+BAUD=8 (8 =115200 ,
7=57600)

AT+BAUD7

>+OK (Set serial monitor to
57600)

AT+BAUD

>+BAUD=7

LTI T T TN

> -
BRRBRAAG

When you use serial terminal like "Arduino serial monitor" to set JDY-23 with AT commands, you must set
"NL and CR", or JDY-23 module will not identify any AT command you send.

b comio =B S

FWER=JDY-23A-VZ2.21,Bluetooth V3.0+BLE -
FNAME=JDY-23A-5PP
FOR
FNAME=MetalGarurumon
FBAUD=8

FOK

m

V] BEhAR [Show timestanp WA CR v 115200 BHE v | ETEL

WiFi ESP8266

WiFi module ESP8266

Introduction

This module uses ESP8266EX's official model ESP-WROOM-02D, 4MB QSPI Flash. The module is
certified by FCC in the United States, CE-RED in Europe, TELEC in Japan, and KC in South Korea.

The module is fully opened, you can program it separately. This is not a simple transparent transmission
module.
Module Functions

The module includes an automatic download circuit and a communication module. The automatic download
circuit refers to the official recommendation to use 2 S8050 transistors to receive the RTS and DTR signals
from the CH340C downloader and trigger the download sequence.

Assembly

Connect to the NyBoard :

Fi) ESP-WROOM- 02 1S

ca@

. Tlnkeen
R T pz e B W W WY

9
e
L

Update sketches through USB downloader :

Development Environment Settings

We use the Arduino as the development environment.

2.1 Add ESP8266 source to the board manager

(@ M amEEER .

==

i BitAnFdL s —FT—4-

https://dl.espressif.com/dl/package e=sp32 index.j=on

4 | 1 |

https://files.seeedstudic. com/arduino/package_seeeduino boards ir »

http://arduino.esp8266.com/stable/package esp8266com index.json

I| SEEEFEAFERERHLSE

eferences

ettings | Network

Sketchbook location:

C:\Users'Montevina \Document s Ay duine

Erowsze

Editor language:

) Additional Boards Manager URLs - -

===

Editor font size: |
Frtar additianal 1MMT s ana Far aarh vaw

hh s M A WAL WAy WARm WA e man &

Interface scale:
https://raw.githubusercontent.com/PetoiCamp/CpenCat/master/Resour

Theme: https://files.seeedstudio.com/arduino/package seeeduino boards ir—
https://dl.espressif.com/dl/package esp32 index.json ‘EJ
http://arduinc.espi266.com/stable/package espB2&é6com index.json
€ T | b

Show werbose output during:

-

Compiler warnings:

DiSPlaﬁ’ line numbers Click for a list of unofficial boards support URLs
Ferif}r code after upload

(o) [Cemea)

Check for updates on st

D Use acecessibility features

Additional Boards Manager URLs: |e_esp32_index. jsom, http://arduine. espB266. com/stable/package_espB26Bcom_index. json
Wore preferences can be edited directly in the file
IoWUsers'Montevina'\AppData’ Local "Arduinel S preferences. txt

{edit orly when Arduine is not runming)

[0K][Cancel

URL : http://arduino.esp8266.com/stable/package_esp8266com_index.json. Paste itinto the URL of the
additional development board in the Arduino preferences.

Then open the "Board Manager" and enter ESP8266 or 8266 to search for the board support package:

D FEESES -=3e
5 |23 » | |EsPB288
espB266 -
by ESP8266 Community (5% 2.7.4 INSTALLED
S EERT R,

Generic ESPE266 Module, Generic ESPE285 Module, ESPDuing (ESP-132 Module), Adafruit Feather HUZZAH ESPEZ266, Invent One,
XinaBox CWO1, ESPresso Lite 1.0, ESPresso Lite 2.0, Phoenix 1.0, Phoenix 2.0, NodeMCU 0.9 (ESP-12 Maodule), NodeMCU 1.0
(ESP-12E Module), Olimex MOD-WIFI-ESPB266(-DEV), SparkFun ESPE266 Thing, SparkFun ESP8266 Thing Dev, SparkFun Blynk
Board, SweetPea ESP-210, LOLIN{WEMOS) D1 R2 & mini, LOLIN{WEMOS) D1 mini Pro, LOLIN(WEMOS) D1 mini Lite, WeMaos D1
R1, ESPino (ESP-12 Module), ThaiEasyElec's ESPina, WifInfo, Arduino, 4D Systems gend IoD Range, Digistump Oak, WiFiduino,
Amperka WiFi Slot, Seeed Wio Link, ESPectro Core, Schirmilabs Eduino WiFi, ITEAD Sonoff, DOIT ESP-Mx DevKit (ESP8285).
Cnline Help

Mare Info

T HlE:

Download the package ESP8266 by ESP8266 Community.

Configuration of the Module

After the board support package downloaded, we select ESP8266 Board (current version: 2.74) -> Generic
ESP8266 Module.

FF&E#R: "Arduino Una” FEREESE.. ERC
#0: "comM19” Arduino ARM (32-bits) Boards [
BEFEREE Arduino AVR Boards 4
=352, | ISREnISE" Arduino megaAVR Boards M.

http://arduino.esp8266.com/stable/package_esp8266com_index.json

Arduino SAMD (32-bits ARM Cortex-M0+) Boards pfH
Atmel AVR Xplained minis 3
ESP32 Arduino »
ESP8266 Boards (2.7.4)

Generic ESP8266 Module

Generic ESP8285 Module
ESPDuino (ESP-13 Module)
Adafruit Feather HUZZAH ESP8266

NyBoard-avr
Seeed SAMD (32-bits ARM Cortex-M0+ and Cortex-M4) Boards
STM32 Boards (selected from submenu)

STME Boards Invent One

WiFi101 / WiFININA Firmware Updater

Board: "ESP32 Dev Module”
Upload Speed: "921600"

CPU Frequency: "240MHz (WiFi/BT)"
Flash Frequency: "80MHz"

Flash Mode: "QIQ"

Flash Size: "16MB (128Mb)"
Partition Scheme: "Biboard V0(4.5 MB APP with OTA /6.9 ME SPIFFS)"
Core Debug Level: "None”

PSRAM: "Disabled”

Port

Get Board Info

Then we set the parameters :

Parameters

Builtin Led

Upload Speed

¥inaRow CW01

Boards Manager...

Arduino ARM (32-bits) Boards

Arduino AVR Boards

Arduino AVR Boards

Arduino Mbed OS Boards (nRF52840 / STM32H747)
Arduine megaAVR Boards

Arduino nRF52 (32-bits ARM) Boards

Arduino SAMD (32-bits ARM Cortex-M0+) Boards
Atmel AVR Xplained minis

ESP32 Arduino

v v v v v v v v ¥

ESP8266 Boards (2.7.4) Generic ESP8266 Module

Settings
2

921600 (Auto-negotiation during downloading,
115200 is too slow)

CPU Frequency 160MHz
Flash Size 4MB
Reset Method DTR reset
IwlIP variant V2 Lower memory
Erase Flash Only sketch
=] FTE#R: "Generic ESPB266 Module” i control. On the UNO,
1 Builtin Led: "2" Pera e et £ B
__ Upload Speed: "921600" >q _ _ S
- CPU Frequency: "160 MHz" S I)
3 Crystal Frequency: "26 MHz" | LED 15 connected Lo Ol

dg Flash Size: "4MB (FS:2MB OTA:~1019KB)"
k1 Flash Mode: "DOUT (compatible)”

_ Flash Frequency: "40MHz"
a4 Reset Method: "dtr (aka nodemcu)”
7 Debug port: "Disabled”

Debug Level: "7"

d3 IwIP Variant: "v2 Lower Memory”

yi VTables: "Flash"
A7 Exceptions: "Legacy (new can return nullptr)”

Erase Flash: "Only Sketch”
Esporessif FW: "nonos-sdk 2.2.1+100 (1907031"

1IME (F5:64KE OTh:~4T0KE)

1IME (F5:12BKE OTA:~43BKE)
1IME (F5:144KE OTA:~430KE)
1ME (F5:160KE OTA:~422KE)
1IME (F5:192KE OTA:~406KE)
1IME (F5:256KE OTA:~374KE)
1IME (F5:512KE OTA:~246KE)
1MB (FS:none OTA:~502KE)

2ME (F5:64KE OTA:~992KE)

2ME (F5:12BKE OTA:~960KE)
2ME (F5:256KE OTA:~B96KE)

S5L Support: "All SSL ciphers (maost compatible)” X
w[: "Com19" [

BiEFERER
RizEE [
EERSISER
he setup function runs once when you pt
setup () {
initialize digital pin LED BUILTIN as
nMode (LED BUILTIN, OUTPUT);

Download Test

2MB (F5:512KB OTA:~T768KB)
ZME (F5:1MB OTA:~512KE)
2ME (FS:inone OTA:~1019KB)
4MB (FS:2MB OTA:~1019KE)
4MEB (F5:3ME OTA:~512KE)
AME (FS:1ME OTA:~1019KE)
4MB (FS:none OTA:~1019KE)
8ME (FS:6MB OTA:~1019KE)
8ME (F5:7MB OTA:~512KE)
16MB (FS:14MB OTA:~1019KE)
16MB (FS:15MB OTA:~512KE)
512KB (FS:32KB OTA:~230KB)
512KB (F5:64KE OTA:~214KB)
512KB (F5:128KE OTA:~182KB)

Le

512KB (F5:none OTA:~246KE)

After configuration, we use the Arduino classic "Blink" program to test the ESP8266 development board.

Open the Blink project, configure the development board, plug the module into the communication module
debugging interface of the USB downloader, and download the Blink example.

Compared with the Arduino UNO, the compilation time is slightly longer, after Linking, the download
progress will be displayed as a percentage:

The "Blink sketch" uses 257KB of flash and 26.8KB of the SRAM.

Download WiFi Firmware
Project URL : https://github.com/PetoiCamp/OpenCat/tree/main/Module Tests/ESP8266WiFiController

There're 3 files in the project:

e ESP8266WiFiController.ino: Arduino sketch with server core code.
e mainpage.h : welcome page (html) in a char array.

e actionpage.h : action controller page (html) in a char array.

Please put them in the folder named "ESP8266WiFiController", then open the ino file and download it to
the ESP8266 WiFi module.

How to Use

After the sketch downloader to the WiFi module, we strongly recommend run it with your USB downloader
S0 you can get the serial output in the Arduino serial monitor.

Open your smartphone WiFi scanner and find an access point named "Bittle-AP" that is not encrypted.
Connectit.

WLAN [%%

Bittle-AP

https://github.com/PetoiCamp/OpenCat/tree/main/ModuleTests/ESP8266WiFiController

@ If your smartphone automatically optimizes your network connection, it will cut the connection of
"Bittle-AP" because there is no Internet connection. Your smartphone may connect to the WiFi with
an Internet connection or even use your cellular data.

Your smartphone may auto jump to the "WiFiManager" page when connecting to "Bittle-AP".

ﬁ{ WiFiManager

IR ELET [

Bittle-AP

Not Connected to petoi

AP not found

If not, please open your browser and enter 192.168.4.1 to enter the WiFi connection configuration page
manually.

O © 192.168.4.1 ® ©

WiFiManager

Bittle-AP

Configure WiFi

Info

Update

Not Connected to petoi
AP not found

On the WiFiManager page, Bittle's wireless module will automatically search for all nearby WiFi SSIDs and

display them. After you click on your own WiFi SSID and enter the password, Bittle will connect to this
network first.

3 (@ 192.168.4.1

petoi & .

.

SSIU

[petoi

Password

[khkkkkkkk

Save

Bittle will print out the IP address assigned by DHCP through the serial port after connecting to the WiFi
successfully. You can also configure a fixed IP address in Arduino.

B

WIi: [L] CUNNECTED:

‘wm: [1] Connecting to NEW AP: petol

wm: [1l] connectTimeout not set, ESP waltForConnectResult...
‘wm: [2] Connection result: WL CONNECTED
wm: [1l] Connect to new AP [SUCCESS]

wm: [1] Got IP Address:

wm: [1] 192.168.43.144

‘wm: [2] disconnect configportal

‘wm: [2] restoring usermode STA

‘wm: [2] wifi status: WL CONNECTED

‘wm: [2] wifi mode: STA

wm: [1] config portal exiting

‘P address: 192.168.43.144

[TTP server started

>

7l BzER [5her timestamp THSEREE | 115200 BHiEE - HTEHIL

Enter the IP address of the WiFi module, now you can control the Bittle through WiFi!

About the Sample Code

The sample code is a simple web server example, including 2 HTML pages. The two pages are stored in
two header files in the form of string constants. The advantage is to avoid calling the client.print function
constantly.

3.1 Set Up the WiFi Networks

Before we start our web server, we should configure the WiFi to connect to your local area network(LAN).
We used to enter the WiFi SSID and password in the program, but it is very inconvenient while we need to
change the network environment.

We use the WiFi manager library to configure the WiFi information through web.

1 // WiFiManager
2 WiFiManager wifiManager;

4 /] Start WiFi manager, default gateway IP is 192.168.4.1
5 wifiManager.autoConnect ("Bittle-AP");

3.2 Web server

Create a new web server and configure port 80 (commonly used HTTP server port)

1 ESP8266WebServer server(80);

3.3 Configure 3 HTTP service handler

The HTTP response function is to handle the incoming HTTP requests.

void handleMainPage() {
//Serial.println("GET /");
server.send (200, "text/html", mainpage);

1
2
3
4}

5 void handleActionPage() {

6 //Serial.println("GET /actionpage");

7 server.send (200, "text/html", actionpage);
8 }

The handleMainPage and handleActionPage response 200 (OK) and corresponding web HTML code for
your web browser (client).

1 void handleAction(){

2 String argname = server.arg('"name");

3

4 df(argname == "gyro"){ // gyro switch
5 Serial.print("g");

6 }

-

The HandleAction function is slightly different. This is an HTTP request processing function with parameter
passing. When the parameter is "gyro", the serial port of the WiFi module sends out the command ("g",
switch IMU), so that our Bittle will execute the command.

So how is this "gyro" parameter generated and passed? Because we sent such an HTTP request with a
value to the server:

1 http: //IP address or DomainName/action?name=gyro

The server parses the action parameter by the function and resolves that the name is "gyro".

We can directly enter this URL in the browser and execute it with the keyboard. The more common method
is to add a link to the "Walk" button on the ActionPage web page. When the gyro button is pressed, the

ahnve L IRl will he sent tn the hnat

The complete walk button configuration is as follows:
1 <button style="width: 25%" onclick="1location.href="'/action?name=gyro'">GyroOn/0ff</button>
After parsing the "name" parameter, we send the actionpage again.

1 server.send(200, "text/html", actionpage);

We bond the handler method with the corresponding URLSs.

1 server.on("/", handleMainPage);
2 server.on("/actionpage", handleActionPage);
3 server.on("/action", handleAction);

3.4 Start the Web Server

1 server.begin();
2 Serial.println("HTTP server started");

3.5 Handle Client Requests

1 void loop(void){
2 server.handleClient();

3}

More Ways Playing the WiFi Module

Compared to the ATMega328P on the NyBoard, there’re more hardware and software resources on the
ESP8266, you can do more experiments with it.

Connect your Bittle to 10T platforms with HTTP restful APIs.
MQTT and node-red.
OTA with WiFi.

Make ESP8266 a strong co-processor for NyBoard for motion data fusion.

Useful Links

