

Please read these instructions before use.
Do not discard: keep for future reference.

User manual

 KIT

 www.qbrobotics.com

 www.qbrobotics.com

Dear customer
Thank you for purchasing our product. To receive more complete service, please visit our website
www.qbrobotics.com

Designed to be controlled like conventional servomotors, the qbmove can be changed in position
and stiffness and so it can substitute small conventional servomotors used for constructing any
mechanism or robotic system.
The qbmove advanced is the first affordable, muscle-like building block for constructing soft
robots. An actuator that is small and lightweight, the qbmove is unique in its ability to endow
robots with natural motion, i.e. that resembles the elegance and deftness of human motion, a
radical contrast to the traditional rigid and mechanical motion of robots built with common
servo-mechanisms.
The qbmove can tuned to be soft or rigid, depending on the task at hand. If the robot needs to
guarantee safety during impact, the actuator can be set to be soft. While if precision is the
greater need, the actuator can be set to be more rigid. Optimizing energy or speed performance
can be achieved by alternating between soft and rigid settings. These combinations can be
applied to tasks that are very complex, e.g. grasping or throwing objects, hammering, drawing,
and so on.

The product before being packed has been tested with care.

Release 2.20 22/09/2020

http://www.qbrobotics.com/

1 22 settembre 2020

Summary
1 About this document .. 3

1.1 Using this document .. 3

1.2 Symbols and designations .. 3

2 Safety .. 4
2.1 Safety instructions ... 4

2.2 Environmental conditions .. 4

2.3 EC Directives on product safety ... 5

3 Introduction to qbmove kit ... 6
3.1 What’s in the box? ... 7

3.2 Technical data .. 8
3.2.1 Agonistic/Antagonistic VSA .. 12

3.2.2 Mathematical model .. 14

3.3 Electrical connections .. 15

3.3.1 Qbally ... 15

4 Mechanical assembly .. 17
4.1 Flat Flange assembly .. 19

4.1.1 Assembly sequence .. 20

4.1.2 ERNI cable routing in the Flat Flange .. 22

4.2 Base Flange assembly ... 23

4.2.1 Assembly sequence .. 24

4.3 C Flange assembly .. 25

4.3.1 Assembly sequence .. 26

4.3.2 ERNI cable routing in the C Flange.. 29

4.4 Double Flat Flange assembly .. 30
4.4.1 Assembly sequence .. 31

4.5 Gripper assembly ... 33
4.5.1 Assembly sequence .. 34

4.6 Tool tips.. 35

4.6.1 Payload evaluation and assembly examples .. 35

4.6.2 Distances between flange and actuator ... 37

5 Software ... 38
5.1 Installing the drivers ... 39

5.2 qbmove GUI ... 39

5.2.1 Installation procedure .. 39

2 22 settembre 2020

5.2.2 Main Layout .. 40

5.2.3 Basic Tab ... 42

5.3 Simulink package .. 44

5.3.1 Installation .. 44

5.3.2 Using the library ... 44

5.3.3 Delta robot example ... 51

5.4 qbAPI software protocol .. 52

5.4.1 Compiler Installation .. 52

5.4.2 Integrating the functions .. 53

5.4.3 Basic Functions ... 53

5.4.4 Code Examples ... 58

5.5 ROS ... 61

5.5.1 Installation .. 61

5.5.2 Usage .. 62

5.5.3 Delta robot example ... 70

5.5.4 ROS packages overview .. 72

6 Troubleshooting ... 74
6.1 Qbmove output shaft doesn’t move smoothly .. 75

6.2 One or more qbmoves don’t activate .. 75

6.3 Blue LED is off when the robot is powered .. 76

6.4 White LED is off when you use the robot ... 76

6.5 Clicking on “Scan Ports” on GUI results in no port shown ... 76

7 Commissioning and Maintenance .. 78
7.1 Commissioning ... 79

7.2 Maintenance and warranty .. 79

8 Appendix ... 80
8.1 VSA papers ... 80

8.2 qbmove papers .. 81

9 Record of documented revisions .. 82

3 22 settembre 2020

1 About this document

This documentation serves for safety-relevant operations on and with the servo-actuators. It
contains safety instructions which must be observed.

The user should assume all responsibility for any accident caused by their careless handling of
the product. Attention must be paid to the following safety instructions.
Please read through this user's guide and make sure you fully understand all the instructions
before assembling and operating this product.

The examples and diagrams in this manual are included solely for illustrative purpose. Because
of the many variables and requirements associated with any installation, qbrobotics s.r.l. cannot
assume responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by qbrobotics s.r.l. with respect to use of information, circuits,
equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of
qbrobotics s.r.l., is prohibited.

1.1 Using this document

The documentation must always be complete and in a perfectly readable state.

Keep the document accessible to the operating and, if necessary, maintenance personnel at all
times.

Pass the document to any subsequent owner or user of the product.

1.2 Symbols and designations

WARNING: identifies information about practice or circumstances that can
lead to personal injury. Attentions help you identify a hazard, avoid a
hazard, and recognize the consequence.

IMPORTANT Identifies information that is critical for successful application
and understanding of the product.

4 22 settembre 2020

2 Safety

2.1 Safety instructions

IMPORTANT SAFETY INSTRUCTIONS – Read Before Using!

• Operational, maintenance, and service requirements are covered in the instruction

manual. Read the entire instruction manual before device use.

• Check that all the contents is intact after removing it from the packaging.

• Keep away from children and pets. Always set off or unplug when not in use.

• Never use aerosol products, petroleum-based lubricants or other flammable products

on or near the actuators.

• Do not use any damaged power cable, plug, or loose outlet. It may cause fire or

damage to people.

• Do not use if damaged or defective. Do not disassemble the actuators.

• Do not insert any objects between moving parts.

• Do not place your face too close to the robot.

• Disconnect the power supply before cleaning or maintenance.

• Disrespect of these precautions can affect safety of the device.

2.2 Environmental conditions

• Select the installation location so that clean dry air is available for cooling the motor

and has unobstructed access to flow around the drive.

• Do not keep or operate the actuators in a place of high temperature or humidity.

• Select a supply voltage that is within the defined tolerance range.

• This product is not waterproof. Never operate the product in a wet place.

• For indoor use only.

5 22 settembre 2020

2.3 EC Directives on product safety

• The following EC directives on product safety must be observed.

• If the product is being used outside the UE, international, national and regional

directives must be also observed.

Machinery Directive (2006/42/EC)
Because of their small size, no serious threats to life or physical condition can normally be
expected from electric miniature drivers. Therefore, the Machinery Directive does not apply to
our products. The products described here are not “incomplete machines”, so installation
instructions are not normally issued by qbrobotics.

Low Voltage Directive (2014/35/EU)
The Low Voltage Directive applies for all electrical equipment with a nominal voltage of 75 to
1500 V DC and 50 to 1000 V AC. The products described in this device manual do not fall within
the scope of this directive, since they are intended for lower voltages.

6 22 settembre 2020

3 Introduction to qbmove kit

This chapter shows what the qbmove kit
includes, all the technical information about
the qbmove Advanced and its mechanical
connection.
Following, the electrical connections
between the devices.

7 22 settembre 2020

3.1 What’s in the box?

Figure 3-1 ① qbmove Advanced; ② Flat Flange; ③ Base Flange; ④ C-Flange; ⑤ Handle; ⑥ qbgripper;
⑦ qbally; ⑧ ERNI cable 200mm; ⑨ ERNI cable 300mm; ⑩ ERNI cable 1500mm; ⑪ USB cable; ⑫ User

manual.

Screws and nuts are provided with each kind of flange:

• Flat Flange: n°8 screws M2x8 ISO1207; n°4 nuts M3 ISO4032 A2; n°4 screws M3x8
ISO4762;

• Base Flange: n°8 screws M2x8 ISO1207; n°4 nuts M3 ISO4032 A2; n°3 screws M3x10
ISO10642;

• C-Flange: n°16 screws M2x8 ISO1207;

• Other components: n°8 screw M3x10 ISO4762; n°8 nuts M3 ISO4032 A2.

Make sure that the following items are included in the package. If there are any items missing,
contact the supplier.

① x 4 ② x 2 ③ x 4 ④ x 4

⑤ x 1 ⑦ x 1 ⑧ x 5

⑨ x 2 ⑩ x 1 ⑪ x 1 ⑫ x 1

⑥ x 1

8 22 settembre 2020

3.2 Technical data

Mechanical and electrical characteristics of the qbmove Advanced:

Figure 3-2 qbmove Advanced. ① output
shaft; ②daisy-chain RS485; ③ USB port.

operating data

(quantity) (unit) (value)

mechanical

Continuous Output Power [W] 33

Nominal Torque [Nm] 5,5

Nominal Speed [rad/s] 5,5

Peak Torque [Nm] 6,8

Maximum Speed [rad/s] 6,33

Maximum Stiffness [Nm/rad] 83,5

Minimum Stiffness [Nm/rad] 0,5

Nominal Stiffness
Variation Time

no load [s] 0,25

max torque [s] 0,25

Maximum Elastic Energy [J] 0,88

Maximum Hysteresis [°] 5

Maximum Deflection
Max stiffness [°] 6

Min stiffness [°] 50

Active Rotation Angle [°] ±180

Angular Resolution [°] 360/32768

Weight [kg] 0,45

electrical

Voltage Supply [V] 24

Nominal Current [A] 1,8

Maximum Current [A] 3

Starting Current [A] 13

control data

Nominal current (USB) [A] 0,26

Electrical protocol RS485/USB -

Figure 3-3 Sensors references.

①

③

②

9 22 settembre 2020

operating data

(quantity) (unit) (value)

Sensor a – Motor 1 Position

Resolution [°] 360/32768

Range [°] 0-360

Sensor b – Motor 2 Position

Resolution [°] 360/32768

Range [°] 0-360

Sensor c – Motor 1 Current

Resolution [A] 5/1638

Range [A] 5

Sensor d – Motor 2 Current

Resolution [A] 5/1638

Range [A] 5

Sensor e – Input Voltage

Resolution [V] 25/1638

Range [V] 0-25

Figure 3-4 qbmove Advanced dimensions.

The qbmove is a back drivable actuator. When the robot is off, a
sufficiently high external load can move the output shaft.

Do not use the Peak torque more than few seconds.

10 22 settembre 2020

Dimensions of the flanges.

Figure 3-5 C-Flange dimensions.

Figure 3-6 Base flange dimensions.

11 22 settembre 2020

Figure 3-7 Snap-on mechanism.

Figure 3-8 Examples of connection.

12 22 settembre 2020

3.2.1 Agonistic/Antagonistic VSA

The qbmove Advanced embeds the features of a servo motor and, moreover, the possibility of
adjusting the output shaft stiffness.
The Figure 3-9 shows a scheme of the agonistic/antagonistic VSA principle, implemented in our
actuator. Basically, there are two motors connected at the output shaft by non-linear springs, so
the output position “x” and the stiffness “σ” depend on the motors’ positions “q1” and “q2”, on
the torque “τ” and on the mathematical model of the system.

Figure 3-9 Agonist/Antagonistic VSA model.

All these quantities are each other connected, then, to evaluate a proper mathematical model
experimental data are needed.
Using a pendulum structure, a sinusoidal movement with different frequencies, and different
stiffness presets, the obtained results can be synthetized in the graphic below; where the
deflection “δ” is the difference between the angular position of the output shaft and the
equilibrium position δ = x - (q1+q2)/2 and the quantity (q1 - q2)/2 is the stiffness preset.

Figure 3-10 Experimental Torque Deflection Characteristic.

13 22 settembre 2020

Using fitting functions (see the next paragraph) the relations between deflection, torque and
stiffness are represented by the following graphics.

Figure 3-11 Torque - Deflection characteristic.

Figure 3-12 Torque - Stiffness characteristic.

14 22 settembre 2020

Moreover, also considering the motors’ speed, our actuator has a 3d workspace. The figures
below show the Torque – Speed characteristic (Figure 3-13) and the VSA workspace (Figure
3-14).

Figure 3-13 Torque - Speed characteristic.

Figure 3-14 Torque - Speed - Stiffness Workspace.

3.2.2 Mathematical model

The following mathematical functions and their parameters describe the mathematical model of
our agonistic/antagonistic VSA.

equilibrium point 𝑿𝒆 =
(𝒒𝟏 + 𝒒𝟐)

𝟐

output stiffness 𝜎 = 𝑎1𝑘1 cosh(𝑎1(𝑥 − 𝑞1)) + 𝑎2𝑘2cosh(𝑎2(𝑥 − 𝑞2))

output torque 𝜏 = 𝑘1 sinh(𝑎1(𝑥 − 𝑞1)) + 𝑘2 sinh(𝑎2(𝑥 − 𝑞2))

elastic energy 𝐻 =
𝑘1(cosh(𝑎1(𝑥 − 𝑞1)) − 1)

𝑎1
+
𝑘2(cosh(𝑎2(𝑥 − 𝑞2)) − 1)

𝑎2

 value Unit

k1 0,0026 [Nm]

a1 8.9995 [1/rad]

k2 0.0011 [Nm]

a2 8.9989 [1/rad]

15 22 settembre 2020

3.3 Electrical connections

In this guide you will find explanation regarding power connection of a single qbmove units as
well as qbmove chains. Power connection is made using the qbally component (seeFigure 3-15).

The supply voltage must be 24V!

3.3.1 Qbally

The qbally is the simplest qbally available. It provides a handily
interface between your power supply and the 6 poles ERNI
cable used to create daisy chain connection between qbmoves
units. With the qbally you can power a single qbmove unit
(Figure 3-16) or a short chain (up to 5) of qbmoves as shown in
Figure 3-17

The qbmove is provided of two LEDs:

• White LED: it indicates that the logic circuit is
powered;

• Blue LED: it indicates that the power circuit is
powered.

Figure 3-15: qbAlly1

Figure 3-16: Connection to a
qbMove

16 22 settembre 2020

IMPORTANT
If you connect the qbmove to the power supply and the USB cable isn’t
connected, both LEDs are on. Because to electrically power the power
circuit, it also means to power the logic one.

IMPORTANT Each qbmove you connect to your system must have a unique ID.

It is advisable not to connect more than four qbmoves for each chain, due to the current capacity
of the ERNI cable.

Figure 3-17: Serial connection of four qbmoves using a qbally1

17 22 settembre 2020

4 Mechanical assembly

This chapter provides the user with the
required procedures needed to assemble
different kind of mechanical connection
between qbmoves and, furthermore, some
technical advice for a correct use of the
platform.

18 22 settembre 2020

Encoding of components for mechanical assembly

Table 4-1: Unified components codes

Assembly code Description Unified code

3001 Bearing 25x32x4 MR 6705

3003 Screw M2x8 ISO 1207 – UNI 6107

3005 Screw M3x8 ISO 4762 – UNI 5931

3007 Screw M3x10 SV ISO 10642

3008 Nut M3 UNI 5588 – DIN 934 (PG)

Figure 4-2: Parts from left to right - 1005, 1006

Figure 4-1: Parts from left to right - 3003, 3005, 3007, 3008

Figure 4-4:Parts from left to right - 2001, 3001, 3002

Figure 4-3: Parts from left to right - 1001, 1002, 1003 ,1004

19 22 settembre 2020

Required tools for the assembly are listed below.

• Flathead screwdriver

• 2 mm Allen wrench

• 2.5 mm Allen wrench

4.1 Flat Flange assembly

Required components:

Figure 4-6: Required components for a flat flange

Figure 4-5: Two qbMoves connected using a flat flange

20 22 settembre 2020

4.1.1 Assembly sequence

Use of the CORE component.

In Figure 4-8 arrows represent points to push in order to open the locking mechanism.

Assemble the 1002 parts with the 1001 central core, using the two pins as reference.
Make sure to the orientation of the two components is the same and with the anchor teeth on
the same side of the counterbores of the central component.

Figure 4-7: Flat Flange

Figure 4-8: Anchors Opening

21 22 settembre 2020

Assemble the Flat flange on the output pulley of the qbmove, by the eight screws 3003, as shown
in Figure 4-9.

Now a second qbmove can be connected to the first one by snapping the flanges, as shown in
Figure 4-10.

Figure 4-10: Two qbMoves connected with a flat flange

Figure 4-9: Flat Flange assembly procedure on a qbMove

22 22 settembre 2020

4.1.2 ERNI cable routing in the Flat Flange

The ERNI cable, which allows the connection of 2 qbmoves, can be placed inside the flat flange
in two ways; First one is shown in Figure 4-11.

Another way is shown in Figure 4-12.

Figure 4-12: Second possible ERNI cable routing inside a flat flange

Figure 4-11: First possible ERNI cable routing inside a flat flange

23 22 settembre 2020

4.2 Base Flange assembly

This type of flange is used to connect one qbmove to your desired frame.

Required components:

Figure 4-14: Required components for a Base Flange

Figure 4-13: qbMove connected to a Base Flange

24 22 settembre 2020

4.2.1 Assembly sequence

Preparation of the Base Flange
Assemble the 1002 parts with the 1004 parts using two 3007 screws and two 3008 nuts, as shown
in Figure 4-15.

Assembly of the Base Flange

Assemble the two parts obtained with the 1001 central core, using the two pins as references.
Make sure to the orientation of the two components is the same and with the anchor teeth on
the same side of the counterbores of the central component.

Figure 4-16: Base Flange

Figure 4-15: Add-on assembly procedure

25 22 settembre 2020

Place the removable component from the side of the elastic anchors of the Core in
correspondence of the first notches, as shown in Figure 4-16
Snap the Base flange on one of the free faces of the qbmove (Figure 4-18) then, using the
provided holes, screw the entire assembly wherever you need.

4.3 C Flange assembly

Figure 4-17: qbMoves connected by a C-Flange

Figure 4-18: Base Flange connected to a qbMove

26 22 settembre 2020

Required components:

4.3.1 Assembly sequence

Preparation of a C Flange

Assemble the 3001 bearing on the free 2001 pulley, on the opposite side of the eight treaded
holes. Assemble the obtained component with the qbmove, to reveal the spot, remove the
plastic bottom cap with a little flathead screwdriver.

Figure 4-20: Free pulley on qbMove assembly procedure

Figure 4-19: Required components for a C-Flange

27 22 settembre 2020

Assemble the 1003 component on the free pulley by using eight 3003 screws. Assemble the
component obtained before and the second 1003 component with the Core, using the two pins
as reference.

Figure 4-21: First flange wing assembly procedure

28 22 settembre 2020

Place the removable 1003 component in correspondence of the first notches, as shown in Figure
4-22. Assembly of the C Flange with the QB-move

Place the qbmove ② in the desired position and then close the C Flange.

Figure 4-23: qbMove C-Flange assembly procedure

Figure 4-22: C-Flange assembly procedure

29 22 settembre 2020

Move the qbmove ① in the desired “zero” position and then fix it with the eight 3003 screws.
NOTE: with the two flanges screwed to the qbmove ① it is still possible to open the flange to
detach or change the orientation of the qbmove ②.

4.3.2 ERNI cable routing in the C Flange

The ERNI cable can be routed inside the C Flange as shown in Figure 4-24.

Figure 4-24: ERNI cable routing inside the C-Flange

30 22 settembre 2020

4.4 Double Flat Flange assembly

This type of flange is used to rigidly connect two qbmoves.

Required components:

Figure 4-26: Required components to assemble a double flat flange

Figure 4-25: qbMoves connected by a Double Flat Flange

31 22 settembre 2020

4.4.1 Assembly sequence

Preparation of the Double Flat Flange.

Join two 1002 components and fix each other with two 3005 screws and two 3006 nuts, as shown
in Figure 4-27.
The obtained components will be the removable elements of the Double Flat Flange.

Assemble the two obtained components with the Core, using the two pins as reference.
Place the removable component in correspondence of the first notches of the flanges, as shown
in Figure 4-28.

Figure 4-28: Double flat flange

Figure 4-27: Removable component

32 22 settembre 2020

Assembly the Double flat flange with the qbmove.
With the double flat flange, you can rigidly connect two qbmove with different orientation. An
example is shown in Figure 4-29.

Figure 4-29: qbMove double flat flange assembly

33 22 settembre 2020

4.5 Gripper assembly

Required items.

Figure 4-31: Required components for a qbMove gripper

Figure 4-30: qbMove gripper

34 22 settembre 2020

4.5.1 Assembly sequence

Assemble the 1005 component on a Flat Flange using four 3008 nuts and two 3007 screws, as
shown in figure below.

Assemble the fixed finger on the qbmove closing the Flat Flange and locking it by two 3007
screws, as shown in Figure 4-32. Make sure to orient the qbmove as shown, in order to have the
electrical connectors as indicated.

Figure 4-33: Fixed finger qbmove assembly procedure

Figure 4-32: Fixed finger assembly procedure

35 22 settembre 2020

Assemble the second finger, component 1006, using the 3003 screws, as shown in Figure 4-33.
The qbmove must be equipped with a rear pulley, as like in a C Flange mounting.

4.6 Tool tips

In this paragraph, you can find some basic advices to correctly assemble a robot using the
qbmove kit, avoiding unwanted behaviors of the assembled robot and let the user using it safely.
For a smart assembly, you must read with attention the chapter 2, primarily the technical data.

The qbmove is a back drivable actuator. When the robot is off, a sufficiently
high external load can move the output shaft.

4.6.1 Payload evaluation and assembly examples

The payload of the assembled robot will depend on the actuator’s torque, on the masses, on the
distances and accelerations.

Figure 4-34: Assembled gripper

36 22 settembre 2020

Before starting the assembly, you must decide which type of robot you want to build and make
proper mechanical considerations about the workspace, the dynamics and the payload. A wrong
assembly can drastically reduce the robot’s payload when near the limits of the workspace.
Instead, a different kinematic can help lifting of higher loads.

Figure 4-35 shows some schematic examples of assembly. Usually the axis of the first joint is
vertically placed to circularly explore the workspace of your robot, then the other actuators can
be assembled in different ways.

Using the flanges in the kit, you can make the joints of you robot. For example: Base Flange to
fix the first qbmove to a frame; Flat Flange for first and fourth joint of ② and second for ④ and
⑤; and C Flange for other joints.

IMPORTANT Before assembly, make a correct evaluation of the joint's torque based on
the technical data and external loads.

Each qbmove you connect to your system must have a unique ID.

Figure 4-35: Different types of assembly examples

1 2 3

4 5

37 22 settembre 2020

4.6.2 Distances between flange and actuator

When you assemble any robot, you must be careful about the distances between flanges and
actuator’s carter (Figure 4-36) because during the use, cables or some object can make
interference with relative movement of the components.

To avoid malfunctions after assembly, you must manually check the movement of each joint to
verify if they work properly.

IMPORTANT Before using the robot, you must check if each joint’s range is free of
obstacles.

Before assembly the devices, make sure that each qbmove is in zero
position (see section 5.2)

Figure 4-36: Critical distances between qbmove’s carter and C-Flange (first two images) and Flat Flange
(last picture on the right)

38 22 settembre 2020

5 Software

This chapter explains how to install the
software, connect the actuators and use
them.
The qbmove GUI will help you to test and
use the single qbmove; A Simulink package
also can be used to control the qbMoves;
The qbAPI software protocol lets you build
a custom program to use the devices you
have; Afterwards you will see where to find
ROS libraries and how to use them to create
your project.

39 22 settembre 2020

5.1 Installing the drivers

Independently from the chosen solution between GUI, Simulink package or qbAPI tools, it is
necessary to download and install the drivers from FTDI’s site.

Instructions vary between operative systems, but it is only necessary to install the drivers under
MAC OSX or Windows.

• Mac: It is necessary to install the FTDI serial drivers to make possible the device is seen as
serial port (i.e.: /dev/tty.usbserial-128).

• Windows: It is necessary to install the FTDI serial drivers to make possible the device is
seen as serial port. Before using anyone of the software utilities provided, is good use
to check on which COM serial port the device has connected. The supported ones are
between COM1 and COM9. To change the port number, go under Control Panel >
Hardware and Sound > Device Manager.
Open the Ports (COM & LPT) drop down menu, right click on the COM port and select
Proprieties.
Select the Port Settings tab and then click on Advanced. Once in Advanced menu select
from the drop-down menu a COM number between COM1 and COM9 and click on OK.

The device should now be recognized properly.

5.2 qbmove GUI

The qbmove GUI is an application useful to quickly test a qbmove and eventually to diagnose
troubles about the hardware or software.

5.2.1 Installation procedure

• Mac:
If not already installed, it is necessary to install the FTDI serial drivers to make possible
the device is seen as a serial port.
Double click on the App and use it. There is also a .dmg package. You can open it and
move the application to your dock or the Application folder.Windows: To use the GUI is
only necessary to run the “qbtools.exe” file

• Windows:
If not already installed, it is necessary to install the FTDI serial drivers to make possible

the device is seen as a serial port.  If the serial port is not seen on the GUI main window,

it is possible that the system has recognized the COM port with a high COM number.
The supported serial ports are from COM1 to COM9. To change the port number, go
under Control Panel > Hardware and Sound > Device Manager.
Open the Ports (COM & LPT) drop down menu, right click on the COM port and select
Proprieties.
Select the Port Settings tab and then click on Advanced. Once in Advanced menu select
from the drop down menu a COM number between COM1 and COM9 and click on OK.
The device should now be recognized properly.

• Unix: Before using the GUI, it is mandatory to add user to the dialout group. To do so, you

http://www.ftdichip.com/Drivers/VCP.htm
http://www.ftdichip.com/Drivers/VCP.htm

40 22 settembre 2020

must execute:

sudo adduser user_name dialout

where user_name is the username under which the GUI is used. Once this command is

executed, it is necessary to log out and back in, for the changes to take effect.

5.2.2 Main Layout

Application is structured in one tab only:

• Basic: Basic commands. ID setting, activation of the board, measurements and
currents reading, position and current inputs.

Figure 5-1: qbMove GUI main window

41 22 settembre 2020

To use the qbMove with this application you have to click on “Scan Ports”. If the qbMove is
properly connected, you’ll see the serial port in the little window on the left. Once the serial port
is seen you could connect the device clicking on the Connect button. This operation, if successful,
enables all of the buttons and you should see a green “Connected” text near the Connect button.
The qbmoves must be powered with 24V power supply. (Figure 5-2).

“Get Info” button prints useful information about qbMove and its control board, in the blank
window on the right side of the application. e.g.: firmware version, parameters values and
position measurements.

Please remember that in a multi-device configuration (e.g. for the Delta Kit
see 4.5 ID configuration), each qbrobotics device connected to your system
must have a unique ID.
Indeed, if any device shares the same ID with another one on the same
chain (all the qbmove devices have ID equals 1 when they are shipped from
qbrobotics) communication issues will lead to unpredictable behaviours,
i.e. no data sent or received can be trusted.

Figure 5-2: Serial Port connection

42 22 settembre 2020

5.2.3 Basic Tab

• Devices IDs present: Once the device, or devices (if connected in a chain), are
connected clicking on “Connect”, a list of their IDs is going to be showed here. Selecting
the desired ID from drop-down menu will make the application connect to that device
and is then possible to use that specific device only;

• New ID: Default ID of the board is 1. Clicking on drop-down menu will show a list of
available IDs (1 to 127). Clicking on “Set” button will set ID equal to the New ID
selected;

• Activation: To use qbMove you first have to activate qbMove’s drivers. You can do this
by clicking on “Activate”. The string next to the button will show board’ state of
activation.

• Inputs: Depending on the control modality set, which by default is “Position”, it is
possible to move the drivers of the qbMove using sliders or Motor 1/2 Input fields. The
corresponding groupBox relative to its control modality is activated/deactivated when
the control modality is set (in advanced tab);

Figure 5-3: qbMove GUI Basic tab

43 22 settembre 2020

• Measurements and Currents: Clicking on “Get Measurements” and “Get Currents” will
show encoder measurements for the first one and current measurements, for the
second one. Encoder measurements are shown in encoder ticks, Currents in mA;

IMPORTANT Remember to power the qbMove, or the chain, before using it.

44 22 settembre 2020

5.3 Simulink package

5.3.1 Installation

5.3.1.1 Download

The first necessary steps to use the qbMove with Simulink, are:

1. Download the qbmove_simulink repository

2. Download the qbAPI repository

Before compiling be sure to have a folder tree like the following, i.e. rename the folders
accordingly:
your_working_directory:

− qbAPI

− qbmove_simulink

5.3.1.2 The C++ compiler

This step is optional if you have already set a C++ compiler on MATLAB or whether you can
exploit the default one depending on the current MATLAB and OS versions.

If you run ̀ mex -setup C++` and it executes without errors, you are just fine. Otherwise you might
need to install a C++ compiler on your system first, usually ̀ g++` on Linux, ̀ MSVC++` on Windows
and `Xcode` on macOS.

If you have any trouble during this installation requirement, have a look at the MATLAB
documentation to find the proper way to install a C++ compiler on your system
(https://it.mathworks.com/help/matlab/ref/mex.html).

5.3.1.3 Compile the library

If the previous steps are fine, navigate under `~/your_working_directory/qbmove_simulink` in
the MATLAB tree explorer and then execute the install script (either by executing `install` from
the MATLAB shell or by running the `install.m` MATLAB script).
The script installs the library accordingly to your current MATLAB version and update the
MATLAB path. If no error is prompted out, the library is correctly installed and you can start using
it.

5.3.2 Using the library

5.3.2.1 Create a new simulink model

1. Click on the "Simulink Library" icon or type "simulink" in the Matlab Command
Window.

2. Create a new model using: "File -> New -> Model"

https://bitbucket.org/qbrobotics/qbmove-simulink
https://bitbucket.org/qbrobotics/qbdevice-api
https://it.mathworks.com/help/matlab/ref/mex.html

45 22 settembre 2020

3. In the new model go to: "Simulation -> Model Configuration Parameters". Under
"Solver" select as Type "Fixed-Step", as Solver "ode1 (Euler)" or "discrete (no
continuous states)" and as Fixed-step size type the delta_t in seconds. (e.g. if you want
to retrieve positions and set new inputs every 5 milliseconds, type 0.005). Click "OK".

Every qbmove needs at least 1 millisecond to read and set new positions, so the
minimum step time allowed is 1 millisecond multiplied by the number of qbmoves in
the chain.

4. You should be able to see the various blocks under libraries in Simulink Library
Browser. From here drag and drop the desired blocks onto your model.

5.3.2.2 The blocks

• qbmove

This block is the interface between your computer and the real qbMove. By default,
you will see 4 input ports and 4 output ports. This means that the block is set to both
receive information from the sensors and send new position reference and stiffness to
the qbMove. If you double-click to the block, the Function Block Parameters will open
and you will be able to set the parameters of the block.

The block inputs have the following functions:

− Handle: Is used to connect the “QB Move Init” block which stores the serial
port

− Pos.1: This input depends on the Input modality set. It could have 2 values:
pos.1 or eq.pos. The first one is used when the “Prime Movers” Modality is
chosen, the second one is used when one between “Equilibrium Position and
Stiffness Preset” or “Equilibrium Position and Stiffness Preset Percentage”
modality is chosen.

− Pos.2: As the pos.1 input, this input can change depending on which input
modality is chosen. It could have 3 values: pos.2, s.preset and stiff 0-100%.
The first one is used when the “Prime Movers” modality is chosen, the
second one is used when “Equilibrium Position and Stiffness Preset” modality
is chosen and the third one is used when the “Equilibrium Position and
Stiffness Preset Percentage” modality is chosen.

− Activation: This input is used when the “Activation on Startup” checkbox is
unchecked. If there is this input, a different from zero signal must be routed
there if the device needs to be activated, vice versa if needs to be deactivate.
Also, works at runtime and the devices can be activated or deactivated at
runtime. If multiple devices are used, this input must receive an array as wide
as the number of devices connected.

46 22 settembre 2020

The block outputs have the following functions: Pos.1: Gives the
position measurements of the first motor of the device.

− Pos.2: Gives the position measurements of the second motor
of the device.

− Pos.L: Gives the position measurement of the qbMove
shaft.

− Error: Debug output. A terminator block can be connected to
it.

For what concerns the block parameters, the explanation follows below:

ID: If it is connected only one device, the ID could be put without brackets, otherwise the syntax
is like in the picture.

Communication direction: Is used to show which ports are shown on the block. If it is on “Both”
the block will have the ports like on the above image. If it is on “Tx”, it will have only the output
ports. If it is on “Rx”, it will have only the input ports.

Input Type: This is used to decide what kind of inputs the device will receive on the input ports.

Figure 5-4: qbMove simulink block

Figure 5-5: qbMove Simulink Block parameters

47 22 settembre 2020

o “Equilibrium Position and Stiffness Preset” – This modality works only with the qbmove. It
drives the shaft position and its stiffness. Both the inputs are in the measurement unit
defined by the field “Unit”

o Equilibrium Position and Stiffness Preset Percentage” – This modality works only with the
qbmove. It drives the shaft position and its stiffness. The position is in the measurement
unit defined by the field “Unit” and the stiffness is in percentage, from the minimum to the
maximum of the device.

o “Prime Movers Positions” - the inputs will be directly the motor positions.

It could be dangerous to use this modality with the qbmove. The motors
and the cable can be seriously damaged and the device could work no
more. Use this modality at your own risk.

Activation on Startup: If this checkbox is set, the block will have only three inputs and the device,
or the devices, will activate when the simulation is started. Otherwise an “Activation” input port
will show and a 0/1 signal should be routed to that input port.

Watchdog Timer: Setting this value to a value different from 0, will set a parameter on the device
that is going to deactivate that device if it doesn’t receive inputs in the time defined by the Timer.

Unit: This parameter defines the measurement unit of the inputs and outputs of the device. The
Tick value is referred ad the encoder ticks of the sensors mounted on the device motors.

qbmove Init

When a Simulink scheme is made, this block is mandatory because it stores the
communication port of the device. The output must be connected to the “handle”
input of the QB Move block.

The serial port name varies between operative systems:

o WINDOWS: Under windows the devices are Communication Ports COM#. To
set the port name, double click on the block and insert in the line edit ‘COM#’
with the right number of the serial port. The communication baudrate
should be put equal to 2000000.

o UNIX: On Unix the devices are usually seen as /dev/tty.USBx. To set the port
name, double click on the block and insert in the line edit ‘/dev/tty.USBx’

Figure 5-6: qbMove Init block

48 22 settembre 2020

with the right number of the serial port. The communication baudrate
should be put equal to 2000000.

o MAC OSX: On OSX the devices are usually seen as /dev/tty.usbserial-XX. To
set the port name, double click on the block and insert in the line edit
‘/dev/tty.usbserial-XX’ with the right number of the serial port. The
communication baudrate should be put equal to 2000000.

qbmove – Get current

This block is used to retrieve currents from the device, or the devices, connected.

Clicking on the block will open the Options panel. It is possible to set the IDs of the
devices connected, in the same way of the QB Move block. The input port, in order to
retrieve the currents, must be connected to the output of the QB Move Init block. The
outputs are the currents of motors of the devices.

qbmove – Get Curr and Meas

This block works the same way of the QB Move block, but with also the benefit of the
QB Move – Get Current block. The motor measurements are all returned at the same
time. With this block, there is no need to use the QB Move and the QB Move – Get
Current block, it is all done with this one. The parameters of the block are the same of
the QB Move one, so refer to that one for any explanation on those.

Figure 5-7: qbMove Get Current block

49 22 settembre 2020

QB Pacer

This is a mandatory block. Every simulation schematic needs to have one. Is used make
the simulation go as the same velocity as the devices connected. As you can see in the
following example, is always used with a Clock to see if the commands of the
simulation are going at the same velocity of the device, or slower.

Figure 5-8: qbMove Get Current and Measurements block

Figure 5-9: qbPacer block

50 22 settembre 2020

5.3.2.3 Example

In the main folder, you will find an example called "qbmove_example.slx". This is a simple
configuration which you can use to test your qbmove.

This example is structured for one device only, with ID equal to 65. As you can see in the above
image on the left there are two constant inputs with a slider gain each, which can be tweaked
while the simulation is running and you can see the device will move. In this case the input
modality is chose to be “Equilibrium Position and Stiffness Preset” so, the example, as it is, will
work only on a qbMove.

On the right there are 3 displays where you can read the values in the measurement unit chosen
of the 3 sensors (depending on the device used, the value of the outputs changes. Refer to
previous section for better explanation).

The error output is used to debug communication. It’s not needed to make the simulation work,
so you can leave a terminator block connected.

Figure 5-10: qbMove control Simulink example

51 22 settembre 2020

As you can see, the QB Pacer block is used to confront time with the clock of the simulation. The
two times, the clock and the real time, are confronted in a scope. There should be two lines in
it. If the simulation step is set correctly the two lines should be overlapped. If the two lines
diverge, a bigger step size must be set.

In this configuration, the step size is set to 2 milliseconds and the computer should be able to
run it in real time. This means that every 2 milliseconds you send a new reference position to
the qbMove and the current position is read. Furthermore, a current reading is done and you
can see the milliampere absorbed by each of the two motors.

Please remember that in a multi-device configuration (e.g. for the Delta Kit
see 4.5 ID configuration), each qbrobotics device connected to your system
must have a unique ID.
Indeed, if any device shares the same ID with another one on the same
chain (all the qbmove devices have ID equals 1 when they are shipped from
qbrobotics) communication issues will lead to unpredictable behaviors, i.e.
no data sent or received can be trusted.

5.3.3 Delta robot example

When using the ROS packages with a Delta Kit, it is possible to exploit the specific aids provided
by qbrobotics to help in a quicker kinematic structure control.
You can inspect the example by opening the Simulink model:
 “/your_working_directory/qbmove_simulink/examples/delta/qbdelta_r2018.slx”
which is valid from MATLAB r2018a on, while `qbdelta_r2017.slx` refers to previous MATLAB
version.

5.3.3.1 Inverse kinematics and control inputs

A specific Delta Kit controller has not been implemented since each single qbmove controller
can be exploited to control the whole system. Anyway, controlling a Delta kinematic structure
only w.r.t. the joint space is not the best option for the end user.

For this reason, we have created the direct and inverse kinematics algorithms which allow a
more user-friendly approach. Without digging too much into the implementation details, which
is publicly available under “/your_working_directory/qbmove_simulink/examples/delta/”, the
major improvements are the followings:

• By exploiting the direct and inverse kinematics of the Delta kinematic structure, the
user can control the end-effector position w.r.t. the cartesian space (cf. the reference
system details in 4.5 ID configuration).

• The 3D positioning of the end-effector can be more or less compliant to the
surrounding environment by adjusting the stiffness of the three upper joints. This
leads respectively to a less or more precise pursuing of the control reference, but the
compliance can be exploited to achieve many tasks that could not have been done
otherwise.

52 22 settembre 2020

• The end-effector qbmove can be treated as a two-finger gripper with the advantage
of exploiting the positioning and compliance control proper of qbmove devices.
Indeed, the grip can be more or less strong w.r.t. the applied stiffness.

Moreover, following the example in the script “delta_waypoints.m”, it is possible to send
predefined waypoints in an infinite loop fashion, which can be used to create a simple static
demo application. Later, when you are more confident with the whole system, you can create
your own dynamic controller based on a similar approach.

5.3.3.2 ROS-style URDF model

In addition, in a way similar to the ROS rviz visualizer, it is possible to visualize the Delta Kit
structure by exploiting the ROS Toolbox and the Robotics System Toolbox.

The URDF model is not exactly the same as the one provided in the ROS packages and indeed it
has been simplified to properly work on MATLAB (you can inspect it by opening “qbdelta.urdf”,
together with the “delta-meshes” directory).

Lastly, the “delta_show.m” script enable MATLAB to plot and visualize the URDF model and give
a remote feedback on what is happening in the real system.

IMPORTANT It is worth noticing that this is just a state visualizer and not a simulator.

5.4 qbAPI software protocol

5.4.1 Compiler Installation

Before using the qbAPI on your system, if not already installed it is good use to install a c++
compiler. Below here are listed all the necessary instructions for each operative system.

− Unix: You should have both gcc/g++ and make already installed.

− Mac OSX: Download XCode from Mac App Store, this will install gcc/g++ and make
utility.

− Windows: Download MinGW and install it. Open MinGW Installation Manager, from
the left panel select basic setup, then from the right panel select mingw32-base and
mingw32-gcc-g++, then click on Installation -> Apply Changes. This will install the
gcc/g++ compiler.
It is necessary to provide Windows the path to the executable binaries.
To do so, go on Control Panel>System and Security>System and click on Advanced
System Settings. Then select Environment Variables and look for path, select it and
click edit.
• In Windows 10 click on New and add a new row with the value C:\MinGW\bin;

http://www.mingw.org/

53 22 settembre 2020

• In previous Windows versions go to the end of Variable Value field add a “;”
separator and append the path to binary folder for gcc, which is C:\MinGW\bin;

Download the make utility from here. Follow the installation instructions. When the installation
procedure has ended you will need to add the binary path to the Environment Variables.
To do that follow the previous steps. The binary folder for make utility is in C:\Program Files
(x86)\GnuWin32\bin.

NOTE: if you have the command shell (CMD) already opened when performing the
installation, you probably will need to close and re-open to use the tools.

5.4.2 Integrating the functions

In order to integrate the functions within your code, it is necessary to include the commands.h
and qbmove_communications.h libraries and compile qbmove_communications.cpp with your
code.
Then is only necessary to call the functions when it is needed.
All the functions have an explanation, in form of comments, in “qbmove_communications.h”.
Following here there will be a brief explanation of the functions and what are used for.

5.4.3 Basic Functions

In most cases these will be all the necessary functions that you will need to use the qbmove
within your system.

5.4.3.1 RS485ListPorts

This function is used to retrieve the name of all serial ports connected to the computer. If no
serial ports are found, a ‘0’ value is returned. Otherwise the number of serial ports connected to
the computer is returned.

The port name is used to create a file descriptor associated to that name.
Arguments:

− char list_of_ports[10][255] – List of ports connected

Example:

int i, num_ports;

char list_of_ports[10][255];

num_ports = RS485listPorts(ports);

for(i = 0; i < num_ports; ++i)

 puts(ports[i]); //prints to screen all the connected ports

5.4.3.2 openRS485

This function, once a list of serial ports is defined, and a series of file descriptors are created, is
used to open the serial port and allow communication with the device connected.

http://gnuwin32.sourceforge.net/packages/make.htm

54 22 settembre 2020

Arguments:

− comm_settings *comm_settings_t – Structure containing info about

communication settings

− const char *port_s – String of the serial port path

− int BAUD_RATE – Default baud rate of the communication. By default, is equal to

2MBaud

Example:

comm_settings comm_settings_t;

openRS485(&comm_settings_t,"/dev/tty.usbserial-128");

if(comm_settings_t.file_handle == INVALID_HANDLE_VALUE)

 // ERROR

5.4.3.3 closeRS485

This function is used to close communication between the computer and the device. Is necessary
to use it before a program is terminated.
Arguments:

− comm_settings *comm_settings_t – Structure containing info about

communication settings
Example:

comm_settings comm_settings_t;

openRS485(&comm_settings_t,"/dev/tty.usbserial-128");

//Doing stuff

closeRS485(&comm_settings_t);

5.4.3.4 commActivate

This function activates the motor drives (or the motor drive if only one present) of the device. It
is necessary to activate the motor drives before using the device, otherwise the device will not
work.
Arguments:

− comm_settings *comm_settings_t – Structure containing info about

communication settings

− int id – The device’s ID number

− char activate – The activation value. 0x03 activates the board, 0x00 deactivates

it
Example:

comm_settings comm_settings_t;

int device_id = 65;

openRS485(&comm_settings_t,"/dev/tty.usbserial-128");

commActivate(&comm_settings_t, device_id, TRUE);

closeRS485(&comm_settings_t);

55 22 settembre 2020

5.4.3.5 commGetActivate

This function is used to retrieve the activation status of the board. It is mostly used after the
commActivate function to see if the board was correctly activated or deactivated. It is needed
an inactive program time if used right after the commActivate.
Arguments:

− comm_settings *comm_settings_t – Structure containing info about

communication settings

− int id – The device’s ID number

− char *activate – Device activation status

Example:

comm_settings comm_settings_t;

int device_id = 65;

char activation_status;

openRS485(&comm_settings_t,"/dev/tty.usbserial-128");

if(!commGetActivate(&comm_settings_t, DEVICE_ID,

activation_status))

 printf("Activation status: %d\n", &activation_status);

else

 puts("Couldn't retrieve activation status.");

closeRS485(&comm_settings_t);

5.4.3.6 commSetInputs

This function is used to give the device reference inputs to motors. The inputs are counted in
encoder ticks. Be aware that the inputs depend on the device used. The qbmove needs two input
values. Be careful to use this function with the qbmove. The device can be severely damaged if
the function is not used properly. With that device is recommended to use the commSetPosStiff
rather than the commSetInputs.
Arguments:

− comm_settings *comm_settings_t – Structure containing info about

communication settings

− int id – The device’s ID number

− short int inputs[] – The array used to store the inputs to be sent to the devices

Example:

comm_settings comm_settings_t;

int device_id = 65;

short int inputs[2];

openRS485(&comm_settings_t,"/dev/tty.usbserial-128");

inputs[0] = 1000; inputs[1] = -1000;

commSetInputs(&comm_settings_t, device_id, inputs);

closeRS485(&comm_settings_t);

56 22 settembre 2020

5.4.3.7 commSetPosStiff

This function is used to give the device reference inputs to motors. Is used only with a qbMove
device. The two inputs are the output shaft position (in degrees) and the stiffness preset of the
shaft. The stiffness preset goes from 0 to 30 degrees.
Arguments:

− comm_settings *comm_settings_t – Structure containing info about

communication settings

− int id – The device’s ID number

− short int inputs[] – The array used to store the inputs to be sent to the devices

Example:

comm_settings comm_settings_t;

int device_id = 65;

short int inputs[2];

openRS485(&comm_settings_t,"/dev/tty.usbserial-128");

inputs[0] = 100; //Degrees

inputs[1] = 30; //stiffness preset

commSetPosStiff(&comm_settings_t, device_id, inputs);

closeRS485(&comm_settings_t);

5.4.3.8 commGetInputs

This function is used to retrieve the inputs given to the device.
Arguments:

− comm_settings *comm_settings_t – Structure containing info about

communication settings

− int id – The device’s ID number

− short int inputs[] – The array used to store the input values to be taken from

the devices
Example:

comm_settings comm_settings_t;

int device_id = 65;

short int inputs[2];

openRS485(&comm_settings_t,"/dev/tty.usbserial-128");

if(!commGetInputs(&comm_settings_t, DEVICE_ID, inputs))

 printf("Inputs: %d\t%d\n",inputs[0], inputs[1]);

else

 puts("Couldn't retrieve device inputs.");

closeRS485(&comm_settings_t);

57 22 settembre 2020

5.4.3.9 commGetMeasurements

This function is used to retrieve the encoder measurements from the device. The measurements
returned are in encoder ticks. If you are using the qbMove, the constant to convert from ticks to
degrees is 360/32768.
Arguments:

− comm_settings *comm_settings_t – Structure containing info about

communication settings

− int id – The device’s ID number

− short int measurements[] – The array used to store the encoder

measurements of the device connected
Example:

comm_settings comm_settings_t;

int device_id = 65;

short int measurements[3];

openRS485(&comm_settings_t,"/dev/tty.usbserial-128");

if(!commGetMeasurements(&comm_settings_t, DEVICE_ID,

measurements)){

 printf(“Measurements:\t”);

 for(int i = 0; i < 3; i++)

 printf("%d\t", measurements[i]);

 printf(“\n”);

}

else

 puts("Couldn't retrieve measurements.");

closeRS485(&comm_settings_t);

5.4.3.10 commGetCurrents

This function is used to retrieve the motor currents from the device.
Arguments:

− comm_settings *comm_settings_t – Structure containing info about

communication settings

− int id – The device’s ID number

− short int currents[] – The array used to store the motor currents of the

device connected
Example:

comm_settings comm_settings_t;

int device_id = 65;

short int currents[2];

openRS485(&comm_settings_t,"/dev/tty.usbserial-128");

if(!commGetCurrents(&comm_settings_t, device_id, currents))

58 22 settembre 2020

 printf("Measurements: %d\t%d\t%d\n",currents[0], currents[1]);

else

 puts("Couldn't retrieve currents.");

closeRS485(&comm_settings_t);

5.4.3.11 commGetCurrAndMeas

This function is used to retrieve both motor currents and encoder measurements from the
device with only one command.
Arguments:

− comm_settings *comm_settings_t – Structure containing info about

communication settings

− int id – The device’s ID number

− short int *values – The array used to store motor currents and encoder

measurements of the device connected
Example:

comm_settings comm_settings_t;

int device_id = 65;

short int values[5];

openRS485(&comm_settings_t,"/dev/tty.usbserial-128");

if(!commGetCurrAndMeas(&comm_settings_t, device_id, currents)){

 printf("Currents: %d\t%d\t%d\n",values[0], values[1]);

 printf("Measurements:

%d\t%d\t%d\n",values[2],values[3],values[4]);

 }

else

 puts("Couldn't retrieve currents and measurements.");

closeRS485(&comm_settings_t);

5.4.4 Code Examples

5.4.4.1 Theoretical Example

The purpose of this example is to show how the functions are supposed to be used, in which
order and with what arguments.

This is not a complete program that use the device with all its capabilities
but it is only an example to see what is the correct order of functions and
what functions should be used to integrate the device within your system.

59 22 settembre 2020

This example may not work properly; We suggest to not use it as it is in a
complete program.

This example and the functions used in it, may work only for a qbmove
device.

Code:

int device_id = 1; // By default the Device ID is 1. Check

your device

 // use the GUI to know what ID has yours

comm_settings comm_settings_t;

const int deg_to_tick = 32768/360;

int num_ports = 0;

char ports[10][255];

char port[255];

short int pos, stiff;

char aux_char;

// Firstly all connected ports must be recognized

num_ports = RS485listPorts(ports);

strcpy(port, ports[0]); //We select the first one, just as example

// Open the port

openRS485(&comm_settings_t, port_s);

if(comm_settings_t.file_handle == INVALID_HANDLE_VALUE)

{

 puts("Couldn't connect to the serial port.");

 return 0;

}

usleep(500000);

puts("Port correctly opened\n");

// Activate motors

commActivate(&comm_settings_t, device_id, 1);

pos = 0;

puts("Insert ‘w’ and press enter to move the shaft to the positive

limit, ‘s’ to move the shaft to the negative limit, ‘x’ to make

the shaft rigid, ‘a’ to move to the negative limit with rigid

shaft, ‘d’ to move to the positive limit with rigid shaft, ‘q’ to

quit the program");

scanf("%c", &aux_char);

60 22 settembre 2020

switch(aux_char) {

 case ‘w’: //Send positive input

 pos = 180 * deg_to_ticks;

 inputs[0] = pos;

 inputs[1] = 0;

 commSetPosStiff(&comm_settings_t, device_id, inputs);

 break;

 case ‘s’: //Send negative input

 pos = -180 * deg_to_ticks;

 inputs[0] = pos;

 inputs[1] = 0;

 commSetPosStiff(&comm_settings_t, device_id, inputs);

 break;

 case ‘x’: //Send stiff input

 stiff = 3000;

 inputs[0] = 0;

 inputs[1] = stiff;

 commSetPosStiff(&comm_settings_t, device_id, inputs);

 break;

 case ‘a’: //Send negative stiff input

 pos = -180 * deg_to_ticks;

 stiff = 3000;

 inputs[0] = pos;

 inputs[1] = stiff;

 commSetPosStiff(&comm_settings_t, device_id, inputs);

 break;

 case ‘d’: //Send positive stiff input

 pos = 180 * deg_to_ticks;

 stiff = 3000;

 inputs[0] = pos;

 inputs[1] = stiff;

 commSetPosStiff(&comm_settings_t, device_id, inputs);

 break;

 case ‘q’: // Close the program

 commActivate(&comm_settings_t, device_id, 0); // Deactivate

motors

 closeRS485(&comm_settings_t); // Close serial port

 break;

 default:

 break;

}

61 22 settembre 2020

5.5 ROS

5.5.1 Installation

5.5.1.1 Requirements

If you have never set it up, you probably need to add your linux user to the dialout group

to grant right access to the serial port resources. To do so, just open a terminal and execute the
following command:

sudo gpasswd -a <user_name> dialout

where you need to replace the <user_name> with your current linux username.

Then — don't forget to — logout or reboot.

5.5.1.2 Ubuntu Packages

If you prefer to leave your catkin workspace as it is, you can simply install all the ROS packages
from the Ubuntu official repositories:

sudo apt update

sudo apt install ros-kinetic-qb-move ros-kinetic-qb-chain

Then, you need to integrate the qbrobotics´→ classes in your own code (cf. 1.1.1.1 for an
overview of the C++ classes).

5.5.1.3 Sources

Another common apporach to install´ ROS´ packages is to clone their sources in the Catkin
Workspace and then recompile everything, which is pretty straightforward for a ROS user. The
following steps show how to do it even for ROS beginners:

1. Clone both the qb_device, qb_move and qb_chain packages to your

Catkin Workspace, e.g. ~/catkin_ws:

cd ~/catkin_ws/src

git clone https://bitbucket.org/qbrobotics/qbdevice-ros.git

git clone https://bitbucket.org/qbrobotics/qbmove-ros.git

git clone https://bitbucket.org/qbrobotics/qbchain-ros.git

IMPORTANT

qbmove related ROS packages have been tested only on Ubuntu Xenial
16.04. and 18.04. We are currently working to improve the compatibility
with the major distributions of linux, this requires time though. We
apologize for the inconvenience and we will be glad if you report any
problem encountered with not yet supported distros.

62 22 settembre 2020

IMPORTANT
It is worth noticing that the Catkin Workspace is expected to be already
initialized. If you have never used ROS on your current machine, you should
follow this guide first:
http://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnvironment

2. Compile the packages using catkin:

cd ~/catkin_ws

catkin_make

3. If you were not familiar with ROS you should be happy now: everything is done!
Nonetheless, if you encounter some troubles during the compilation, feel free to ask
for support on our Bitbucket.

IMPORTANT

Depending on your ROS installation, you may need some extra packages to
properly compile the code. Please, be sure that you have already installed
at least ros-kinetic-ros-controllers, ros-kinetic-transmission-interface, ros-
kinetic-joint-limits-interface, ros-kinetic-combined-robot-hw, and their
dependencies (e.g. use sudo apt install <ros-pkg>).

5.5.1.4 Device setup

Connect a qbmove to your system is basically a matter of plugging in a USB cable.
Nonetheless, read carefully this manual to understand all the requirements and advices about
either single-device or chained configurations, e.g. the Delta kinematic structure of this manual.

5.5.2 Usage

As shown in the following picture there are two distinct configurations to control several
qbrobotics devices connected to the system:

• The first (and recommended) groups all the Hardware Interfaces together (thanks to
the combined_robot_hw) and exploits them as a unique robot system. We have called
it "synchronous" just to point out that every sequence of reads and writes is always
done in the same predefined order.

• The second mode threats every device as an independent Hardware Interface with its
dedicated ROS Node which executes the control loop independently w.r.t. the rest of
the system, i.e. "asynchronously".

https://bitbucket.org/account/user/qbrobotics/projects/ROS
http://wiki.ros.org/combined_robot_hw

63 22 settembre 2020

Figure 5-11: Synchronous vs asynchronous control mode (either qb SoftHand or qbmove devices)

Mixed configurations can be also achieved through a proper setup. In such a case we can think
of synchronous sub-systems which execute asynchronously w.r.t. each other.
Note that in a single-device system the synchronous mode is a nonsense.
In both cases there is always one central Node which manages the shared resources for the serial
communication (e.g. one or many USB ports) and which provides several ROS services to whom
wants to interact with the connected devices. This Node is called Communication Handler and it
is usually started in a separate terminal.

Please remember that in a multi-device configuration (e.g. for the Delta Kit
see 4.5 ID configuration), each qbrobotics device connected to your system
must have a unique ID.
Indeed, if any device shares the same ID with another one on the same
chain (all the qbmove devices have ID equals 1 when they are shipped from
qbrobotics) communication issues will lead to unpredictable behaviours,
i.e. no data sent or received can be trusted.

To properly set qbmove IDs for the Delta Kit, see the section Errore. L'origine riferimento non è
stata trovata..

5.5.2.1 Details

To understand what is hiding under the hood, have a look at the C++ classes overview which
sums up all the main concepts of our ROS packages:

64 22 settembre 2020

Figure 5-12: Package overview with C++ class details

5.5.2.2 Communication Handler

The Communication Handler Node has no parameters to be set, therefore it is always launched
like this:

roslaunch qb_device_driver communication_handler.launch

On start, it scans the serial communication resources connected to your system and shows a list
of the devices it has found. By default, it never scans again for new devices, apart from asking it
explicitly during the initialization of a control Node.

If the Communication Handler find fewer (or even more) devices than
expected, check the device IDs to be sure that there are no devices that are
sharing the same ID.
This check can be easily achieved by connecting one device at a time and
starting the Communication Handler each time.

This is a simple example when starting the Communication Handler with two qbrobotics® devices
connected on two distinct USB ports:

[INFO] [1524044523.511369300]: [CommunicationHandler] handles [

/dev/ttyUSB1].

[INFO] [1524044524.426984697]: [CommunicationHandler] handles [

/dev/ttyUSB0].

[INFO] [1524044525.218613760]: [CommunicationHandler] has found

65 22 settembre 2020

[2] devices connected:

[INFO] [1524044525.218696997]: - device

[1] connected through [/dev/ttyUSB0]

[INFO] [1524044525.218736612]: - device

[2] connected through [/dev/ttyUSB1]

When the Communication Handler is on, it provides all the Services required to interact with the
connected devices: e.g. get info or measurements, activate or deactivate motors, set commands,
and even more... A detailed description of the services can be found in the qb_device_driver

package wiki.

5.5.2.3 Control

As shown before, the control Node exploits the ros_control Controller Manager which loads and
runs the device controllers. Each controller provides an Action Server that, together with the
Hardware Interface structure, allows the user to send commands to the relative device and get
its measurements.
From an API point of view, it is implemented an Action Client which matches the relative
trajectory controller and provides a method to send Goals, i.e. command references, directly to
the given device. Additionally, the Action Client is subscribed to a Topic
(*_controller/command) that can be used to send reference commands from outside the

code, e.g. asynchronously from the command line, or from a higher-level control Node, e.g. as a
result of a planning algorithm.

It is recommended not to mix these two control modes: choose either to control the device
directly from the code by extending our API or through this command Topic.
Regardless the control mode chosen for the given application, and apart form a customization
of the API, the following launch file templates can be used respectively to control several devices
or a single one:

http://wiki.ros.org/qb_device_driver
http://wiki.ros.org/ros_control

66 22 settembre 2020

Figure 5-13: Example of launch files

5.5.2.4 Control Modes

For the sake of simplicity, we are going to cover all the control modes for a single qbmove, but it
is just a matter of putting things together and set the launch file parameters properly to control
several devices together (qb_chain_control is dedicated for such a scope).
All the control modes are initialized in the same manner but with distinct command line
arguments. The default single-device control Node which brings everything up and simply waits
for commands on the above-mentioned Action topic is the following:

roslaunch qb_move_control control.launch standalone:=true activa

te_on_initialization:=true device_id:=<actual_device_id>

The arguments explained

• activate_on_initialization [false]: Activates the motors at startup

(the device will not move since the first command reference is received).

• device_id [1]: Each device has its own ID, you need to set the one of the actual

device connect to your system.

• standalone [false]: Starts the Communication Handler together with the

control Node. If you set this to false (or remove it since the default value

is false), you need to launch the Communication Handler in a separate terminal.

It is worth noting that the activation of the motors can be postponed to improved safety if you
are not aware of the state of the system at startup. To do so just set
activate_on_initialization:=false (or remove it since the default value is

http://wiki.ros.org/qb_hand_control

67 22 settembre 2020

false) and make a call to the Communication Handler activate_motors Service, when

your system is ready, e.g. as follows:

rosservice call /communication_handler/activate_motors {"id: <ac

tual_device_id>, max_repeats: 0"}

Additional arguments

• control_duration [0.01]: The duration of the control loop expressed in

seconds.

• get_currents [true]: Choose whether or not to retrieve current

measurements from the device.

• get_positions [true]: Choose whether or not to retrieve position
measurements from the device.

• get_distinct_packages [false]: Choose whether or not to retrieve

current and position measurements from the device in two distinct packages.

• max_repeats [3]: The maximum number of consecutive repetitions to mark

retrieved data as corrupted.

• set_commands [true]: Choose whether or not to send command positions to

the device.

• set_commands_async [false]: Choose whether or not to send commands

without waiting for ack.

• use_rviz [true]: Choose whether or not to use rviz. If enabled you should see

a virtual qbmove on screen performing a similar behavior, i.e. moving the shaft and
both the actuators accordingly.

When the ROS Node is started by using the above `roslaunch` command it is possible to send a
simple position and stiffness command through the given command Topic, as follow:

rostopic pub -1 /qbmove1/control/qbmove1_position_and_preset_tra

jectory_controller/command trajectory_msgs/JointTrajectory "head

er:

 seq: 0

 stamp:

 secs: 0

 nsecs: 0

 frame_id: ''

joint_names: [qbmove1_shaft_joint, qbmove1_stiffness_preset_virt

ual_joint]

points:

- positions: [0.5,0.5]

 velocities: [0,0]

 accelerations: [0,0]

 effort: [0,0]

 time_from_start: {secs: 1, nsecs: 0}"

68 22 settembre 2020

The followings are particular control modes which are enabled with few parameters, but the
concepts of this paragraph hold for all of them.

5.5.2.5 GUI Control

This control mode is the simpler and the one suggested to test that everything is working as
expected. You are able to move the qbmove shaft position and its stiffness interactively, but
nothing more than this.
You will probably need this only the very first times and for debugging.
To start this mode just add use_controller_gui:=true to the general roslaunch
command (be sure that the opposite use_waypoints is not used).

After a while a GUI should appear to screen with two empty dropdown menus, a red enable
button below them, and a speed scaling slider at the bottom.

1. Select the Controller Manager namespace from the left menu, e.g.
/<robot_namespace>/control/controller_manager (where

<robot_namespace> is an additional argument of the launch file needed with

several devices). This enables the right menu which provides all the controllers
available for the connected device.

2. Select the qbmove controller from the second dropdown menu and enable it through
the circular button.

3. Two slider will appear in the GUI: the first controls the shaft position (which ranges
respectively within the shaft position limits expressed in radians), while the second
sets the stiffness preset, which ranges from 0 (lowest stiffness) to 1 (highest

stiffness). You can also vary the speed through the bottom speed scaling slider if you
like a faster/slower motion. No other timing constraints can be set in this mode.

Figure 5-14: Example of GUI to control the qbmove (0.42 rad for the shaft position and 12% stiffness value)

69 22 settembre 2020

5.5.2.6 Waypoint control

This control mode is a bit more structured and useful than the previous: it allows to set a fixed
trajectory of any number of position waypoints (with timing constraints) and set the robot to
cycle infinitely on it (because of the loop it is recommended to set the first and last waypoint in
a similar configuration to avoid unwanted sudden changes).
To start this mode just add use_waypoints:=true to the general roslaunch

command (be sure that the opposite use_controller_gui is not used). You won't see

any control interface in this case but the qbmove should start moving according to the given
trajectory, parsed from a yaml file located at

<robot_package>_control/config/<robot_name>_waypoints.yaml

where robot_name and robot_package are two additional launch file arguments.

Customization
You can modify the waypoint trajectory to replicate the behavior you want: either change the
<robot_package>_control/config/<robot_name>_waypoints.yaml or add

another custom application-specific file in the config directory. In the second case, you need

to set the argument robot_name properly when launching the command from the terminal.

The waypoint configuration is as follows:

Waypoints describe the desired motion trajectory:

- time [s]: can be either a single value or an interval for w

hich joint_positions hold

- joint_positions:

- shaft position [radians] and stiffness preset [0,1];

- joint_velocities: optional, use it only if you want a nonze

ro values

- shaft position [radians/s] and stiffness preset [0,1]/s;

- joint_accelerations: optional, use it only if you want a no

nzero values

- shaft position [radians/s^2] and stiffness preset [0,1]/

s^2;

It is worth noting that, if specified, joint_positions, joint_

velocities and joint_accelerations must be of size two.

waypoints:

 -

 time: [1.0]

 joint_positions:

 <device_name>: [0.0, 0.0]

 -

 time: [2.75, 3.25]

 joint_positions:

 <device_name>: [1.57, 0.0]

70 22 settembre 2020

 -

 time: [4.0]

 joint_positions:

 <device_name>: [0.5, 0.0]

 joint_velocities:

 <device_name>: [-0.5, 0.0]

 -

 ...

5.5.2.7 API control

If you need a complex (i.e. real) control application, e.g. the qbmove is mounted on a robot which
uses computer vision aid to grasp objects, the previous two control modes don't really help
much. What we provide for real applications is the full ROS libraries to manage and control
the qbmove.
You must dig into the qb_move package documentation and find what better suits for your

needs, e.g. extend the qbDeviceControl class provided, or even redesign some of its parts

by following an approach similar to ours.

IMPORTANT
Our recommendation is to use as much as possible our resources, classes
and macros to help you while developing your application. Don't reinvent
the wheel!

At last, if you come up with a something useful for the whole community, it will be amazing if
you propose your improvement with a Pull Request in the package of interest on our Bitbucket.

5.5.3 Delta robot example

When using the ROS packages with a Delta Kit, it is possible to exploit the specific aids provided
by qbrobotics to help in a quicker kinematic structure control.

5.5.3.1 Launch file and URDF model

The Delta Kit launch file is built in a very similar way to the one reported in Figure 5-13, and you
can also inspect it by opening “~/catkin_ws/src/qbchain-
ros/qb_chain_control/launch/qbdelta_control.launch”.
This launch expects four qbmoves with IDs from 1 to 4 (cf. Delta Kit IDs configuration for details)
linked to the specific Delta Kit URDF, and equip the whole system with a dedicated ROS
controller.

To launch the Delta Kit, you just need to execute the following command from a terminal:

roslaunch qb_chain_control qbdelta_control.launch standalone:=tr

ue activate_on_initialization:=true use_rviz:=true

http://wiki.ros.org/qb_move
https://bitbucket.org/account/user/qbrobotics/projects/ROS

71 22 settembre 2020

And you can also enable the GUI or Waypoint control modes as usual (by passing either
`use_controller_gui:=true` or `use_waypoints:=true` as additional arguments).

IMPORTANT It is worth noticing that this is just a state visualizer and not a simulator.

5.5.3.2 Dedicated controller

A specific Delta Kit controller could have not been implemented since each single qbmove
controller can be exploited to control the whole system. Anyway, controlling a Delta kinematic
structure only w.r.t. the joint space is not the best option for the end user.

For this reason, we have created the `qb_chain_controllers/DeltaKinematicController` (derived
by the official `controller_interface::Controller<hardware_interface::PositionJointInterface>`)
which is loaded automatically during startup and which allows a more user-friendly approach.
Without digging to much into the C++ class implementation, which is publicly available under
`~/catkin_ws/src/qbchain-ros/qb_chain_controllers/`, the major improvements are the
followings:

• By exploiting the direct and inverse kinematics of the Delta kinematic structure, the
user can control the end-effector position w.r.t. the cartesian space (cf. the reference
system details in 4.5 ID configuration).

• The 3D positioning of the end-effector can be more or less compliant to the
surrounding environment by adjusting the stiffness of the three upper joints. This
leads respectively to a less or more precise pursuing of the control reference, but the
compliance can be exploited to achieve many tasks that could not have been done
otherwise.

• The end-effector qbmove can be treated as a two-finger gripper with the advantage
of exploting the positioning and compliance control proper of qbmove devices.
Indeed, the grip can be more or less strong w.r.t. the applied stiffness.

These differences are notable also in the Waypoint control mode which configuration is as
follows:

Waypoints describe the desired motion trajectory:

- time [s]: it is mandatory and can be either a single value o

r an interval for which other values hold;

- end_effector [m]: a three-element list of [x, y, z] coordin

ates for the delta end-effector position;

- joint_stiffness [0,1]: a three-element list of stiffness va

lues, one for each of the three upper motors;

- gripper: a two-element list containing the shaft position [

rad] and the stiffness value [0,1] of the gripper.

Whenever these are not present in the Parameter Server, it is a

ssigned the last available value.

72 22 settembre 2020

waypoints:

 - time: [1.0]

 joint_stiffness: [0.75, 0.75, 0.75]

 end_effector: [0.0, 0.0, 0.15]

 gripper: [0.0, 0.5]

 -

 time: [3.0, 4.0]

 # stiffness is not changed in this case

 end_effector: [0.0, 0.07, 0.15]

 gripper: [0.0, 0.5]

 -

 time: [5.0]

 joint_stiffness: [0.5, 0.5, 0.5]

 end_effector: [0.0, 0.07, 0.15]

 gripper: [1.0, 0.5]

 -

 ...

5.5.3.3 Interactive markers

In addition to the new controller, the Delta Kit URDF is equipped with Interactive Markers
(http://wiki.ros.org/rviz/Tutorials/Interactive%20Markers%3A%20Getting%20Started) that
enable a manual motion of the end-effector directly from rviz.
Also, the stiffness of the joints can be adjusted manually, together with the gripper position and
stiffness.

This feature can be useful especially for beginners to have some practice and become more
confident with this kinematic structure and its operative space. Moreover, a simple test when
inventing a demo application can be done more quickly in this way.

5.5.4 ROS packages overview

You can find all the needed packages here:

• qb_device: http://wiki.ros.org/qb_device

• qb_move: http://wiki.ros.org/qb_move

• qb_chain: http://wiki.ros.org/qb_chain

http://wiki.ros.org/qb_device
http://wiki.ros.org/qb_move
http://wiki.ros.org/qb_move

73 22 settembre 2020

This page was intentionally left blank

74 22 settembre 2020

6 Troubleshooting

This chapter explains how to solve
problems that you may encounter in the
process of building a robot, programming a
robot file, or operating a robot platform.

75 22 settembre 2020

6.1 Qbmove output shaft doesn’t move smoothly

[Cause]
In some cases, qbmove’s output shaft may get stiff and won’t rotate smoothly when you try to
move it with your hands. This is not product failure but a situation caused by the tight
arrangement of the internal gears.
Tight gear arrangement is designed for precise motion control. So, you can see the robot moves
smoothly without a problem when the assembly is finished and power is supplied to each of
qbmove actuators

[Troubleshooting]

Solution 01
Turn the output shaft in the opposite direction first and try again to turn in the desired direction.
If you can’t provide enough force, use a provided flange to rotate the output shaft. Much greater
torque can be leveraged and it’s easier to rotate the shaft.

Solution 02
Connect qbmove to the PC and run “qbmove GUI”. Make sure that the sliders of position and
stiffness are in zero position, then activate the qbmove.
Once activated, you can move the device by moving the sliders. To reset the position to zero,
click on “Zero” button. In this way, shaft will go to zero position and minimum stiffness
configuration. You can then use the sliders to verify the correct behavior of the qbmove.

6.2 One or more qbmoves don’t activate

[Cause]
The angular positions of actuator’s internal shafts are too far from zero position.

[Troubleshooting]

Solution 01
Turn the output shaft back near the zero position. If you can’t provide enough force, use a
provided flange to rotate the output shaft or move directly the assembled robot.

Solution 02
Connect qbmove to the PC and run “qbmove GUI”. Then click the button “Get Measurements”.
If one of the positions is higher than 13000 ticks, follow “Solution 1”. Then you can try to activate
the device.

76 22 settembre 2020

6.3 Blue LED is off when the robot is powered

[Cause]
The blue LED is damaged or the actuator doesn’t receive the electrical supply, directly from the
power supply or from a previous actuator of the power chain.

[Troubleshooting]

Solution 01
Connect qbmove to your PC and run “qbmove GUI” (page 39), make sure that the sliders of
position and stiffness are in zero position, then connect the power supply and active the qbmove.
If the device works properly and the blue LED is off, it means that the LED is damaged but you
can continue using the device.
If the blue LED is off and the device doesn’t move, change the daisy chain port.

6.4 White LED is off when you use the robot

[Cause]
The white LED is damaged or the actuator doesn’t receive the electrical supply from a previous
actuator of the power chain or from the USB cable.

[Troubleshooting]

Solution 01
Connect qbmove to your pc using the USB cable provided and run “qbmove GUI”. If LED is still
off and the device doesn’t communicate, replace the USB cable.
If the qbmove communicate and the LED is off, the LED is damaged and you can continue using
it.

Solution 02
If the interested qbmove is a part of power chain, replace the ERNI cable.
If the problem persists, follow the “Solution 1”.

6.5 Clicking on “Scan Ports” on GUI results in no port shown

[Cause]
The COM port number is too high or there is a connection problem

77 22 settembre 2020

[Troubleshooting]

Solution 01
Under Windows, try changing the COM port number by going under Control Panel > Hardware
and Sound > Device Manager.
Open the Ports (COM & LPT) drop down menu, right click on the COM port and select Proprieties.
Select the Port Settings tab and then click on Advanced. Once in Advanced menu select from the
drop-down menu a COM number between COM1 and COM9 and click on OK.

Solution 02
Check if the one or more led is on, if it is. Try changing USB post on your computer. If it is not,
change the USB cable or reboot your pc.

78 22 settembre 2020

7 Commissioning and Maintenance

This chapter explains how to solve
problems that you may encounter in the
process of building a robot, programming a
robot file, or operating a robot platform.

79 22 settembre 2020

7.1 Commissioning

Hazards due to hot surfaces

Depending on the load and ambient temperature, the motor can overheat. Allow the motor to
cool down after operation.

Risk of injury caused by protruding, rotating or moving parts of the
driven mechanical units

Damage to the motor and/or Speed Controller because of
incorrectly set control parameters

Before commissioning, check and if necessary adjust the configured parameters.

The drive performing unplanned movements during
commissioning cannot be ruled out

Make sure that, even if the drive starts to move unintentionally, no danger can result for
personnel or machinery

7.2 Maintenance and warranty

Products of the company qbrobotics s.r.l. are produced using the most modern production
methods and are subject of strict quality inspections. All sales and deliveries are performed
exclusively on the basis of our General Conditions of Sale and Delivery which can be viewed on
the qbrobotics home page www.qbrobotics.com.
The warranty will not be valid in case of tampering with the device, or with the software.

http://www.qbrobotics.com/

80 22 settembre 2020

8 Appendix

8.1 VSA papers

A decoupled Impedance observer for a Variable Stiffness Robot

http://www.centropiaggio.unipi.it/publications/decoupled-impedance-observer-variable-
stiffness-robot.html

A real time robust observer for an agonist antagonist variable stiffness actuator

http://www.centropiaggio.unipi.it/publications/real-time-robust-observer-agonist-antagonist-
variable-stiffness-actuator.html

A Real-time Parametric Stiffness Observer for VSA devices

http://www.centropiaggio.unipi.it/publications/real-time-parametric-stiffness-observer-vsa-
devices.html

A Stiffness Estimator for Agonistic–Antagonistic Variable-Stiffness-Actuator Devices

http://www.centropiaggio.unipi.it/publications/stiffness-estimator-
agonistic%E2%80%93antagonistic-variable-stiffness-actuator-devices.html

Variable Stiffness Control for Oscillation Damping

http://www.centropiaggio.unipi.it/publications/variable-stiffness-control-oscillation-
damping.html

Variable Stiffness Actuators: the user’s point of view

http://www.centropiaggio.unipi.it/publications/variable-stiffness-actuators-user%E2%80%99s-
point-view.html

Controlling Soft Robots: Balancing Feedback and Feedforward Elements

http://www.centropiaggio.unipi.it/publications/controlling-soft-robots-balancing-feedback-
and-feedforward-elements.html

http://www.centropiaggio.unipi.it/publications/decoupled-impedance-observer-variable-stiffness-robot.html
http://www.centropiaggio.unipi.it/publications/decoupled-impedance-observer-variable-stiffness-robot.html
http://www.centropiaggio.unipi.it/publications/real-time-robust-observer-agonist-antagonist-variable-stiffness-actuator.html
http://www.centropiaggio.unipi.it/publications/real-time-robust-observer-agonist-antagonist-variable-stiffness-actuator.html
http://www.centropiaggio.unipi.it/publications/real-time-parametric-stiffness-observer-vsa-devices.html
http://www.centropiaggio.unipi.it/publications/real-time-parametric-stiffness-observer-vsa-devices.html
http://www.centropiaggio.unipi.it/publications/stiffness-estimator-agonistic%E2%80%93antagonistic-variable-stiffness-actuator-devices.html
http://www.centropiaggio.unipi.it/publications/stiffness-estimator-agonistic%E2%80%93antagonistic-variable-stiffness-actuator-devices.html
http://www.centropiaggio.unipi.it/publications/variable-stiffness-control-oscillation-damping.html
http://www.centropiaggio.unipi.it/publications/variable-stiffness-control-oscillation-damping.html
http://www.centropiaggio.unipi.it/publications/variable-stiffness-actuators-user%E2%80%99s-point-view.html
http://www.centropiaggio.unipi.it/publications/variable-stiffness-actuators-user%E2%80%99s-point-view.html
http://www.centropiaggio.unipi.it/publications/controlling-soft-robots-balancing-feedback-and-feedforward-elements.html
http://www.centropiaggio.unipi.it/publications/controlling-soft-robots-balancing-feedback-and-feedforward-elements.html

81 22 settembre 2020

8.2 qbmove papers

VSA - CubeBot. A modular variable stiffness platform for multi degrees of freedom systems

http://www.centropiaggio.unipi.it/publications/vsa-cubebot-modular-variable-stiffness-
platform-multi-degrees-freedom-systems.html

Towards variable impedance assembly: the VSA peg-in-hole

http://www.centropiaggio.unipi.it/publications/towards-variable-impedance-assembly-vsa-
peg-hole.html

Passive impedance control of a Qboid multi-DOF VSA-CubeBot manipulator

http://www.centropiaggio.unipi.it/publications/passive-impedance-control-qboid-multi-dof-
vsa-cubebot-manipulator.html

Open Source VSA-CubeBots for Rapid Soft Robot Prototyping

http://www.centropiaggio.unipi.it/publications/open-source-vsa-cubebots-rapid-soft-robot-
prototyping.html

Robust Optimization of System Compliance for Physical Interaction in Uncertain Scenarios

http://www.centropiaggio.unipi.it/publications/robust-optimization-system-compliance-
physical-interaction-uncertain-scenarios.html

http://www.centropiaggio.unipi.it/publications/vsa-cubebot-modular-variable-stiffness-platform-multi-degrees-freedom-systems.html
http://www.centropiaggio.unipi.it/publications/vsa-cubebot-modular-variable-stiffness-platform-multi-degrees-freedom-systems.html
http://www.centropiaggio.unipi.it/publications/towards-variable-impedance-assembly-vsa-peg-hole.html
http://www.centropiaggio.unipi.it/publications/towards-variable-impedance-assembly-vsa-peg-hole.html
http://www.centropiaggio.unipi.it/publications/passive-impedance-control-qboid-multi-dof-vsa-cubebot-manipulator.html
http://www.centropiaggio.unipi.it/publications/passive-impedance-control-qboid-multi-dof-vsa-cubebot-manipulator.html
http://www.centropiaggio.unipi.it/publications/open-source-vsa-cubebots-rapid-soft-robot-prototyping.html
http://www.centropiaggio.unipi.it/publications/open-source-vsa-cubebots-rapid-soft-robot-prototyping.html
http://www.centropiaggio.unipi.it/publications/robust-optimization-system-compliance-physical-interaction-uncertain-scenarios.html
http://www.centropiaggio.unipi.it/publications/robust-optimization-system-compliance-physical-interaction-uncertain-scenarios.html

qbrobotics.com

9 Record of documented revisions

Revision Date Remarks

2.9 09/04/18 First version

2.10 08/08/18 Updated ROS section

2.11 23/10/18 Updated ROS section

2.12 16/04/19 Updated Electrical connections section

2.20 22/09/2020 Update paragraph 6.3 and 6.5

