

ROBOTICS

Product specification

IRB 760

Trace back information: Workspace 20D version a7 Checked in 2020-12-11 Skribenta version 5.3.075

Product specification

IRB 760-450/3.2 IRB 760-445/3.2

Document ID: 3HAC039612-001

Revision: Q

The information in this manual is subject to change without notice and should not be construed as a commitment by ABB. ABB assumes no responsibility for any errors that may appear in this manual.

Except as may be expressly stated anywhere in this manual, nothing herein shall be construed as any kind of guarantee or warranty by ABB for losses, damage to persons or property, fitness for a specific purpose or the like.

In no event shall ABB be liable for incidental or consequential damages arising from use of this manual and products described herein.

This manual and parts thereof must not be reproduced or copied without ABB's written permission.

Keep for future reference.

Additional copies of this manual may be obtained from ABB.

Original instructions.

© Copyright 2020 ABB. All rights reserved. Specifications subject to change without notice.

Table of contents

	Over	view	′
1	Desc	ription	9
	1.1	Structure	g
		1.1.1 Introduction	9
		1.1.2 Different robot versions	11
	1.2	Safety standards	14
	• • • •	1.2.1 Applicable standards	14
	1.3	Installation	16
	1.0	1.3.1 Introduction	16
		1.3.2 Operating requirements	17
		1.3.3 Mounting the manipulator	18
	1.4	Calibration	24
	1.7	1.4.1 Calibration methods	24
		1.4.2 Fine calibration	26
	1.5	Load diagrams	27
	1.5	1.5.1 Introduction to load diagrams	27
		1.5.2 Load diagrams	28
		1.5.3 Maximum load and moment of inertia	30
		1.5.4 Maximum TCP acceleration	31
	1.6		32
	1.0	Mounting of equipment	32
	1.7		32 37
	1.7	Robot motion	37 37
		1.7.1 Introduction	
		1.7.2 Performance according to ISO 9283	40
		1.7.3 Velocity	41
	4.0	1.7.4 Stopping distance/time	42
	1.8	Customer connections	43
	4.0	1.8.1 Introduction	43
	1.9	Maintenance and troubleshooting	45
		1.9.1 Introduction	45
2	Spec	ifications of variants and options	47
	2.1	Introduction to variants and options	47
	2.2	Manipulator	48
	2.3	Floor cables	53
	2.4	User documentation	54
_			
3		ssories	55
	3.1	Introduction to accessories	55
Ind	dex		57

Overview

About this product specification

It describes the performance of the manipulator or a complete family of manipulators in terms of:

- · The structure and dimensional prints
- · The fulfilment of standards, safety and operating requirements
- The load diagrams, mounting of extra equipment, the motion and the robot reach
- · The specification of variant and options available

Usage

Product specifications are used to find data and performance about the product, for example to decide which product to buy. How to handle the product is described in the product manual.

Users

This manual is intended for:

- · Product managers and Product personnel
- · Sales and Marketing personnel
- Order and Customer Service personnel

References

Reference	Document ID
Product specification - Controller IRC5 IRC5 with main computer DSQC1000.	3HAC047400-001
Product specification - Controller software IRC5 IRC5 with main computer DSQC1000 and RobotWare 5.6x.	3HAC050945-001
Product specification - Controller software IRC5 IRC5 with main computer DSQC1000 and RobotWare 6.	3HAC050945-001
Product manual - IRB 760	3HAC039838-001
Product specification - Robot user documentation, IRC5 with RobotWare 6	3HAC052355-001

Revisions

Revision	Description
-	- New Product Specification
A	Table for ambient temperature adjustedMinor corrections
В	Machinery directive updated
С	The maximum allowed deviation in levelity of the base plate is changed, see <i>Mounting the manipulator on page 18</i> .
D	Minor corrections/update

Continued

Revision	Description
E	Text for ISO test adjusted
F	Minor corrections/update
G	Graphite white color added
Н	Minor corrections/update
J	Axis Calibration method added
К	Published in release R17.1. The following updates are done in this revision: Restriction of load diagram added.
L	Published in release R17.2. The following updates are done in this revision: Updated list of applicable standards.
М	Published in release R18.1. The following updates are done in this revision: • TCP acceleration added.
N	Published in release R18.2. The following updates are done in this revision: Added locating hole position in tool flange view.
Р	Published in release R20C The following updates are done in this revision: New variants IRB 760-445/3.2 added.(only for press tending application)
Q	Published in release R20D The following updates are done in this revision: New customer option cable harness (with ethernet cable) added. Warranty section updated.

1.1.1 Introduction

1 Description

1.1 Structure

1.1.1 Introduction

Robot family

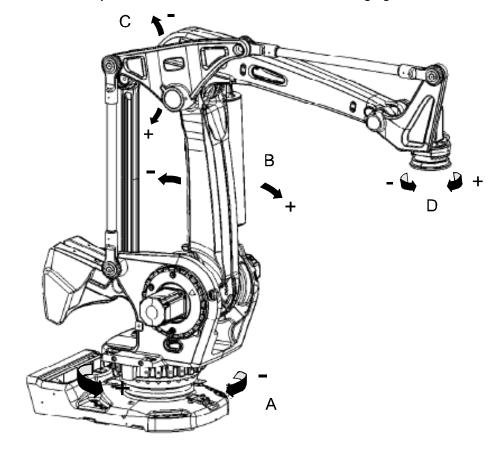
IRB 760 is ABB Robotics dedicated Full Layer Pallitaizer, 4-axis robot, designed with a focus on its high production capacity, short cycle time at a high payload, long reach together with the very high uptime, which is significant for ABB's robots. It is available in two versions with a handling capacity of 450 kg and 445 kg and a reach of 3.18 m. The IRB 760-445/3.2 variant has a modified morphology of the tilt housing.

Customer connections (option) as power, signals, Bus signals and twin air are integrated in the robot, from the robot base to connections at the robot tool flange.

IRC5 and RobotWare

The robot is equipped with the IRC5 controller and robot control software, RobotWare. RobotWare supports every aspect of the robot system, such as motion control, development and execution of application programs, communication and so on. For more information, see *Product specification - Controller IRC5 with FlexPendant*.

Safety


Safety standards valid for complete robot, manipulator and controller.

Additional functionality

For additional functionality, the robot can be equipped with optional software for application support. For a complete description of optional software, see the *Product specification - Controller software IRC5*. Other powerful tools to make commissioning/programming easier are e.g. RobotStudio and PickMaster 5.

Manipulator axes

The IRB 760 manipulator has 4 axes as shown in the following figure.

xx1000001136

Pos	Description
Α	Axis 1
В	Axis 2
С	Axis 3
D	Axis 6

1.1.2 Different robot versions

1.1.2 Different robot versions

General

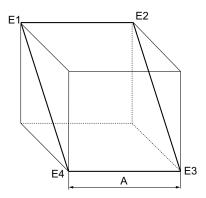
The IRB 760 is available in two versions, for floor mounting (no tilting around X or Y axis).

Robot type	Handling capacity	Reach (m)
IRB 760-450/3.2	450 kg	3.18 m
IRB 760-445/3.2	445 kg	3.18 m

Manipulator weight

Robot type	Weight (kg)
IRB 760	2300 kg

Other technical data


Data	Description	Note
Airborne noise level	The sound pressure level outside the working space	< 70 dB (A) Leq (acc. to Machinery directive 2006/42/EG).

Power consumption at max load

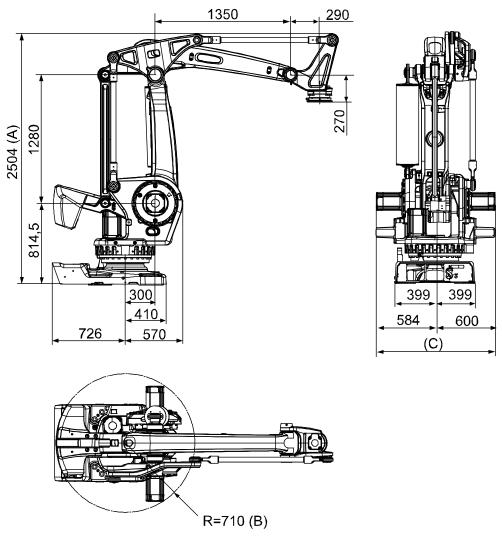
Type of movement	IRB 760-450/3.2 IRB 760-445/3.2
ISO cube Max. velocity	2.75 kW
General palletazing movements	2.95 kW

Robot in calibration position	IRB 760-450/3.2 IRB 760-445/3.2
Brakes engaged	0.20 kW
Brakes disengaged	0.98 kW

The path E1-E2-E3-E4 in the ISO cube is show in the following figure.

xx1000000101

Pos	Description
Α	1000 mm

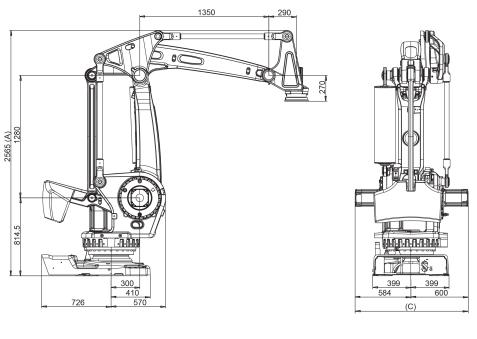

1.1.2 Different robot versions

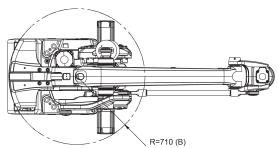
Continued

Dimensions IRB 760

The following figure shows the rear, side and top view of the IRB 760 manipulator (dimensions in mm).

IRB 760-450/3.2




xx1000001137

Pos	Description
Α	2966 mm max working range
В	Radius for axis 3 motor 750 mm radius for fork lift pocket (option)
С	Max forklift width 1195 mm

1.1.2 Different robot versions Continued

IRB 760-445/3.2

xx2000000270

Pos	Description
Α	3027 mm max working range
В	Radius for axis 3 motor
	750 mm radius for fork lift pocket (option)
С	Max forklift width 1195 mm

1.2.1 Applicable standards

1.2 Safety standards

1.2.1 Applicable standards

Note

The listed standards are valid at the time of the release of this document. Phased out or replaced standards are removed from the list when needed.

General

The product is designed in accordance with EN ISO 10218-1, Robots for industrial environments - Safety requirements -Part 1 Robot. If there are deviations, these are listed in the declaration of incorporation which is included on delivery.

Standards, EN ISO

The product is designed in accordance with selected parts of:

Standard	Description	
EN ISO 12100:2010	Safety of machinery - General principles for design - Risk assessment and risk reduction	
EN ISO 13849-1:2015	Safety of machinery, safety related parts of control systems - Part 1: General principles for design	
EN ISO 13850:2015	Safety of machinery - Emergency stop - Principles for design	
ISO 9787:2013	Robots and robotic devices Coordinate systems and motion nomenclatures	
ISO 9283:1998	Manipulating industrial robots, performance criteria, and related test methods	
EN ISO 14644-1:2015 ⁱ	Classification of air cleanliness	
EN ISO 13732-1:2008	Ergonomics of the thermal environment - Part 1	
EN 61000-6-4:2007 + A1:2011 IEC 61000-6-4:2006 + A1:2010	EMC, Generic emission	
(option 129-1)		
EN 61000-6-2:2005 IEC 61000-6-2:2005	EMC, Generic immunity	
EN IEC 60974-1:2012 ⁱⁱ	Arc welding equipment - Part 1: Welding power sources	
EN IEC 60974-10:2014 ⁱⁱ	Arc welding equipment - Part 10: EMC requirements	
EN IEC 60204-1:2016	Safety of machinery - Electrical equipment of machines - Part 1 General requirements	
IEC 60529:1989 + A2:2013	Degrees of protection provided by enclosures (IP code)	

i Only robots with protection Clean Room.

ii Only valid for arc welding robots. Replaces EN IEC 61000-6-4 for arc welding robots.

1.2.1 Applicable standards Continued

European standards

The product is designed in accordance with selected parts of:

Standard	Description	
EN 614-1:2006 + A1:2009	Safety of machinery - Ergonomic design principles - Part 1: Terminology and general principles	
EN 574:1996 + A1:2008	Safety of machinery - Two-hand control devices - Functional aspects - Principles for design	

UL, ANSI, and other standards

Standard	Description	
ANSI/RIA R15.06	Safety requirements for industrial robots and robot systems	
ANSI/UL 1740	Safety standard for robots and robotic equipment	
CAN/CSA Z 434-14	Industrial robots and robot Systems - General safety requirements	

1 Description

1.3.1 Introduction

1.3 Installation

1.3.1 Introduction

General

IRB 760 is designed for floor mounting (no tilting around X or Y axis), end effector with max. weight of 450 kg and 445 kg including payload, can be mounted on the mounting flange (axis 6). For more information on Load Diagrams, see *Load diagrams on page 27*.

Working range

The working range of axis 1 can be limited by mechanical stops. Electronic Position Switches can be used on all axes, for position indication of the manipulator.

1.3.2 Operating requirements

1.3.2 Operating requirements

Protection standards

Manipulator IP67.

Explosive environments

The robot must not be located or operated in an explosive environment.

Ambient temperature

Description	Standard/Option	Temperature
Manipulator during operation	Standard	0°C ^{a)} (32°F) to +50°C (122°F)
For the controller	Standard/Option	See Product specification - Controller IRC5 with FlexPendant
Complete robot during transportation and storage	Standard	-25°C (-13°F) to +55°C (131°F)
For short periods (not exceeding 24 hours).	Standard	up to +70°C (158°F)

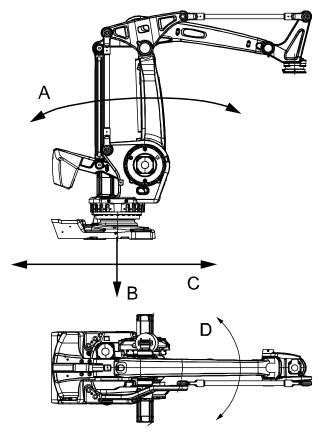
a. At low environmental temperature < 10 °C is, as with any other machine, a warm-up phase recommended to be run with the robot. Below 5 °C this warm-up phase is mandatory. Otherwise there is a risk that the robot stops or run with lower performance due to temperature dependent oil- and grease viscosity.

Relative humidity

Description	Relative humidity
Complete robot during operation, transportation and storage	Max. 95% at constant temperature

1.3.3 Mounting the manipulator

1.3.3 Mounting the manipulator


Maximum Load

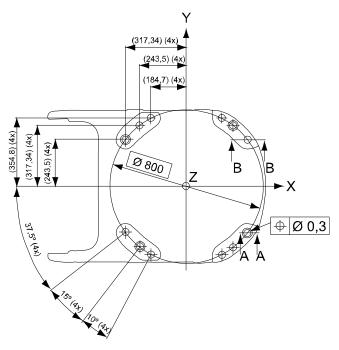
Maximum load in relation to the base coordinate system.

Floor Mounted

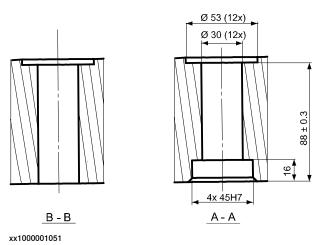
Force	Endurance load (in operation)	Max. load (emergency stop)
Force xy	± 9.1 kN	± 17.7 kN
Force z	+ 26.7 ± 3.6 kN	+ 26.7 ± 7.9 kN
Torque xy	± 28.9 kNm	± 38.5 kNm
Torque z	± 6.2 kNm	± 14.2 kNm

The following figure shows the direction of forces.

xx1000001138


Α	Torque _{xy} (T _{xy})
В	Force _z (F _z)
С	Force _{xy} (F _{xy})
D	Torque _z (T _z)

Note regarding M_{xy} and F_{xy}


The bending torque (M_{xy}) can occur in any direction in the XY-plane of the base coordinate system. The same applies to the transverse force (F_{xy}) .

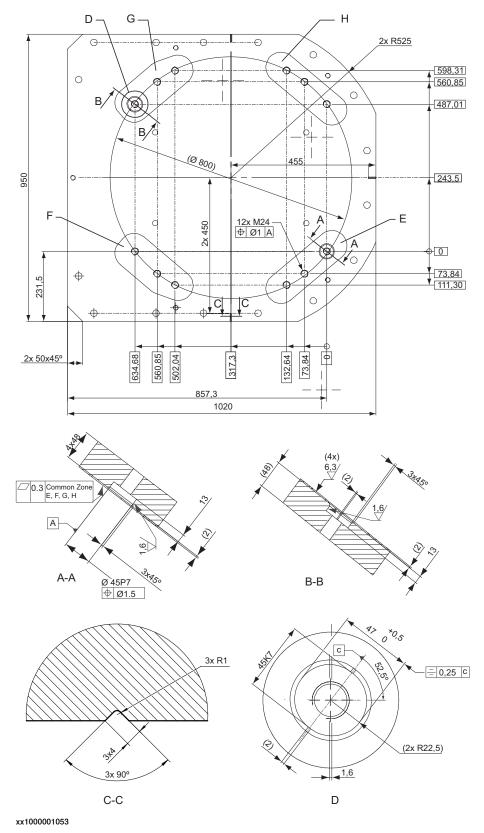
Fastening holes robot base

The following figure shows the hole configuration (dimensions in mm).

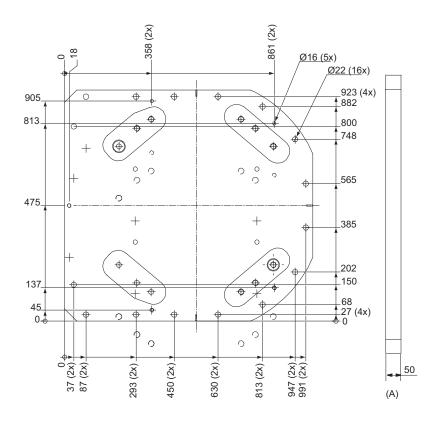
xx1000001050

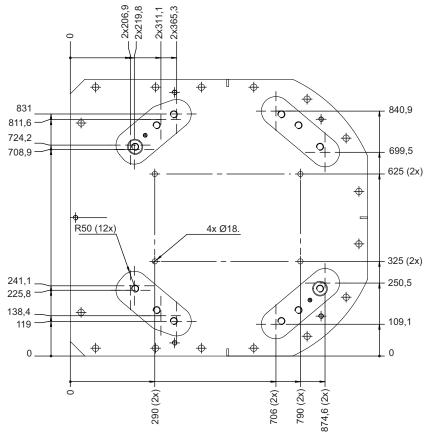
Recommended screws for fastening the manipulator to the base	M24 x 140 8.8 with 4 mm flat washer.
Torque value	725 Nm

Two guiding sleeves required, dimensions see figures in this chapter.



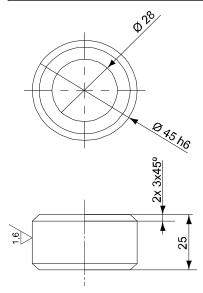
Note


Only two guiding sleeves shall be used. The corresponding holes in the base plate shall be circular and oval according to the following base plate drawing. regarding AbsAcc performance, the recommended are the chosen guide holes those are according to next two figures.


Base plate drawing

The following figure shows the option base plate (dimensions in mm).

E, F, G, H Common tolerance zone (accuracy all over the base plate from one contact surface to the other)



Continues on next page

xx1000001054

Pos	Description
Α	Color: RAL 9005. Thickness: 80-100 μm

xx1000001055

Pos	Description
-	Guide sleeve, protected from corrosion

1.4.1 Calibration methods

1.4 Calibration

1.4.1 Calibration methods

Overview

This section specifies the different types of calibration and the calibration methods that are supplied by ABB.

More information is available in the product manual.

Types of calibration

Type of calibration	Description	Calibration method
Standard calibration	The calibrated robot is positioned at calibration position.	Axis Calibration or Calibration Pendulum ⁱ
	Standard calibration data is found on the SMB (serial measurement board) or EIB in the robot.	
	For robots with RobotWare 5.04 or older, the calibration data is delivered in a file, calib.cfg, supplied with the robot at delivery. The file identifies the correct resolver/motor position corresponding to the robot home position.	

The robot is calibrated by either Calibration Pendulum or Axis Calibration at factory. Always use the same calibration method as used at the factory.

Information about valid calibration method is found on the calibration label or in the calibration menu on the FlexPendant.

If no data is found related to standard calibration, Calibration Pendulum is used as default.

Brief description of calibration methods

Calibration Pendulum method

Calibration Pendulum is a standard calibration method for calibration of all ABB robots (except IRB 6400R, IRB 640, IRB 1400H, and IRB 4400S).

Two different routines are available for the Calibration Pendulum method:

- Calibration Pendulum II
- · Reference calibration

The calibration equipment for Calibration Pendulum is delivered as a complete toolkit, including the *Operating manual - Calibration Pendulum*, which describes the method and the different routines further.

Axis Calibration method

Axis Calibration is a standard calibration method for calibration of IRB 760 and is the most accurate method for the standard calibration. It is the recommended method in order to achieve proper performance.

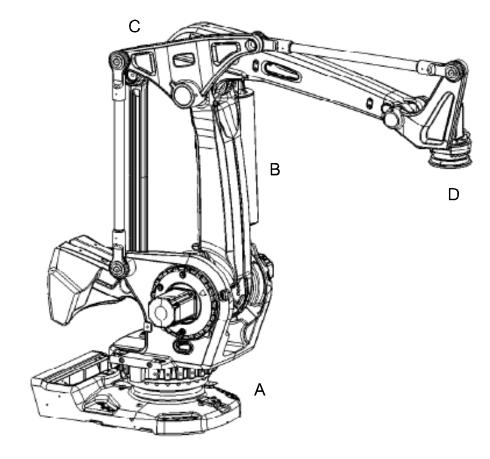
The following routines are available for the Axis Calibration method:

- Fine calibration
- Update revolution counters
- · Reference calibration

The calibration equipment for Axis Calibration is delivered as a toolkit.

1.4.1 Calibration methods Continued

The actual instructions of how to perform the calibration procedure and what to do at each step is given on the FlexPendant. You will be guided through the calibration procedure, step by step.


1.4.2 Fine calibration

1.4.2 Fine calibration

General

Fine calibration is made using the Calibration Pendulum, see *Operating manual - Calibration Pendulum*.

The following figure shows all axes in zero position.

xx1000001142

Pos	Description
Α	Axis 1
В	Axis 2
С	Axis 3
D	Axis 6

Calibration	Position
Calibration of all axes	All axes are in zero position
Calibration of axis 1 and 2	Axis 1 and 2 in zero position Axis 3 to 6 in any position
Calibration of axis 1	Axis 1 in zero position Axis 2 to 6 in any position

1.5.1 Introduction to load diagrams

1.5 Load diagrams

1.5.1 Introduction to load diagrams

Information

WARNING

It is very important to always define correct actual load data and correct payload of the robot. Incorrect definitions of load data can result in overloading of the robot.

If incorrect load data and/or loads are outside load diagram is used the following parts can be damaged due to overload:

- · motors
- · gearboxes
- · mechanical structure

WARNING

In the robot system is the service routine LoadIdentify available, which allows the user to make an automatic definition of the tool and load, to determine correct load parameters. Please see *Operating Manual - IRC5 with FlexPendant*, art. No. 3HAC16590-1, for detailed information.

WARNING

Robots running with incorrect load data and/or with loads outside diagram, will not be covered by robot warranty.

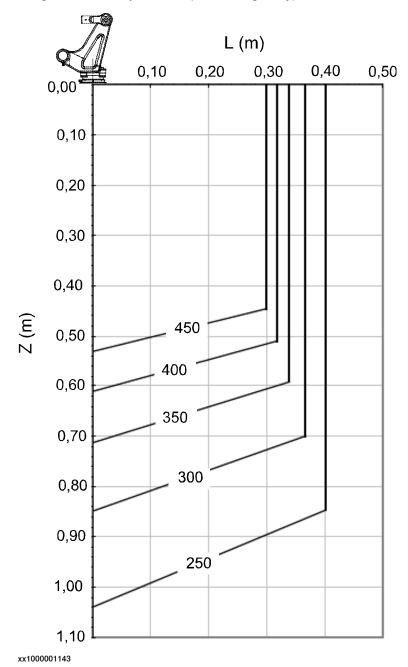
General

The load diagram is valid up to max moment of inertia for axis 6. No extra load on upper arm.

At different moment of inertia the load diagram will be changed. For robots that are allowed tilted, wall or inverted mounted, the load diagrams as given are valid and thus it is also possible to use RobotLoad within those tilt and axis limits.

Control of load case by "RobotLoad"

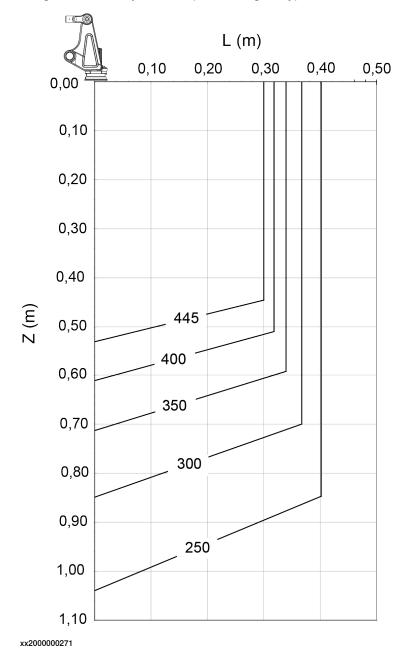
To easily control a specific load case, use the calculation program ABB RobotLoad. Contact your local ABB organization for more information.


The result from RobotLoad is only valid within the maximum loads and tilt angles. There is no warning if the maximum permitted armload is exceeded. For over load cases and special applications, contact ABB for further analysis.

1.5.2 Load diagrams

1.5.2 Load diagrams

IRB 760-450/3.2

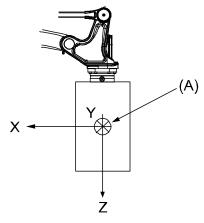

The following figure shows the maximum permitted load mounted on the robot tool flange at different positions (center of gravity).

1.5.2 Load diagrams Continued

IRB 760-445/3.2

The following figure shows the maximum permitted load mounted on the robot tool flange at different positions (center of gravity).

Product specification - IRB 760 3HAC039612-001 Revision: Q


1.5.3 Maximum load and moment of inertia

1.5.3 Maximum load and moment of inertia

General

Load in kg, Z and L in m and J in kgm^2 .

Axis	Maximum moment of inertia
6	Ja6 = Load x $L^2 + J_{0Z} \le 400 \text{ kgm}^2$

xx1000001078

Pos	Description
Α	Center of gravity

	Description
J _{ox} , J _{oy} , J _{oz}	Max. moment of inertia around the X, Y and Z axes at center of gravity.

1.5.4 Maximum TCP acceleration

1.5.4 Maximum TCP acceleration

General

Higher values can be reached with lower loads than the nominal because of our dynamical motion control QuickMove2. For specific values in the unique customer cycle, or for robots not listed in the table below, we recommend then to use RobotStudio.

Maximum Cartesian design acceleration for nominal loads

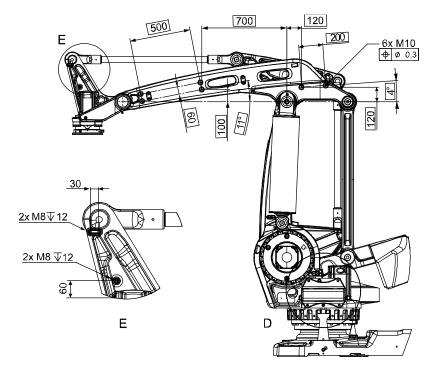
	r	Controlled Motion Max acceleration at nominal load COG [m/s ²]
IRB 760	23	17

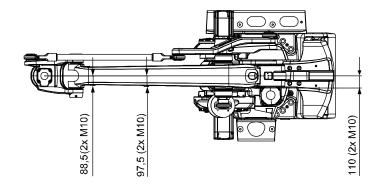
Note

Acceleration levels for E-stop and controlled motion includes acceleration due to gravitational forces. Nominal load is define with nominal mass and cog with max offset in Z and L (see load diagram).

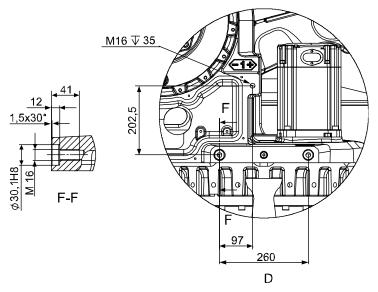
1.6.1 Introduction

1.6 Mounting of equipment

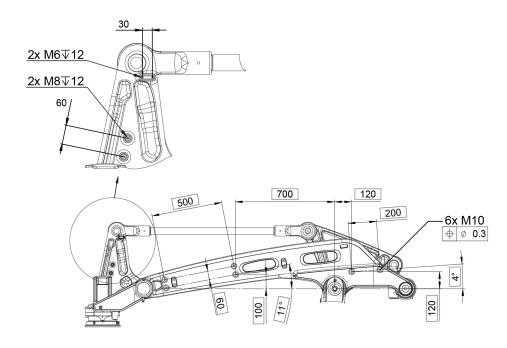

1.6.1 Introduction


General

Extra loads can be mounted on to the upper arm and on to the left side of the frame. Holes and definitions of masses are shown in figure below.


For mounting of an external vacuum hose there are six holes on the upper arm figure below. The max. weight for the vacuum hose and fastening device is 35 kg. When using the holes, the weight of the vacuum hose shall be reduced from the max. Handling capacity, for each variant respectively.

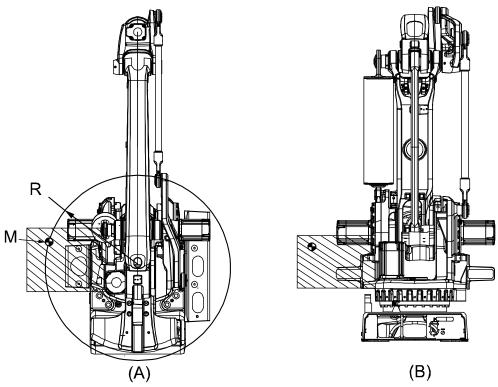
IRB 760-450/3.2



xx1000001147

xx1000001148

IRB 760-445/3.2

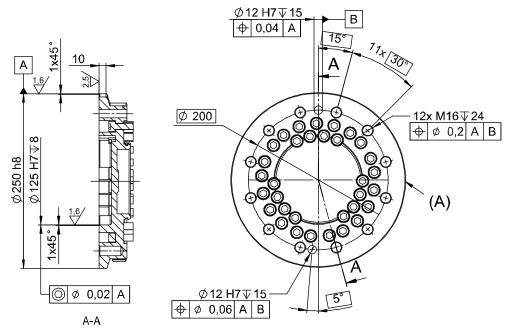


xx1900001259

Frame

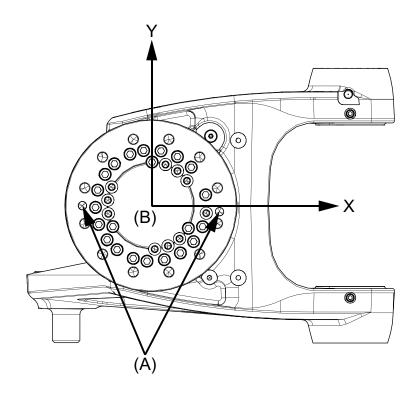
For mounting of extra load on to the frame there are three holes on the left side (see previous figure). The max. weight of the extra load is 150 kg and the max. moment of inertia is 120 kgm^2 .

Description	Value and definition
Permitted extra load on frame	M = 150 kg
Max. moment of inertia for extra load	$J_{H} = 120 \text{ kgm}^2$
Recommended position, see figure below	$J_H = J_{H0} + M \times R^2$ J_{H0} is the moment of inertia (kgm ²) for the extra load.R is the radius (m) from the center of axis 1.M is the total mass (kg) of the extra load.



xx1000001149

Pos	Description
Α	View from above
В	View from the rear
М	Center of gravity of hip load
R	Radius to CoG of (M)


Robot tool flange

The following figure shows the robot tool flange SS-EN ISO 9409;2004 (dimensions in mm).

xx1000001058

Pos	Description
A	Calibration mark

xx1800001403

-	Tool flange in bottom view	
Α	Locating hole	
В	Tool coordinate system	

For fastening of gripper-tool-flange to robot-tool-flange all bolt holes for 12 bolts quality class 12.9 shall be used.

1.7.1 Introduction

1.7 Robot motion

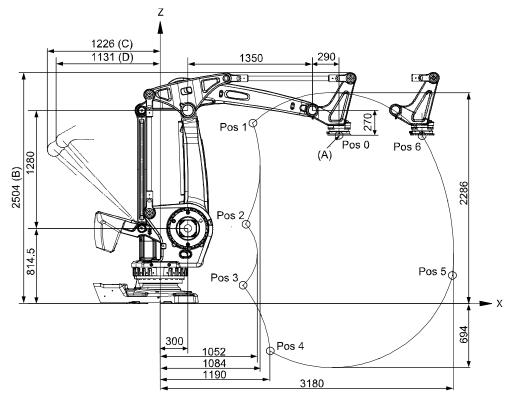
1.7.1 Introduction

Type of motion

The table below specifies the types and ranges of the robot motion in every axis.

Axis	Type of motion	Range of motion
1	Rotation motion	-180° to +180° Can be extended, with use of option, to: -220° to +220° (option 561-1)
2	Arm motion	-42° to +85°
3	Arm motion	-20° to +120° IRB 760 - 445/3.2: -20° to +80°
2-3	Arm motion	20° to 160°
6	Turn motion	-300° to +300° - 67 revolutions to +67 revolutions ¹⁾

¹⁾ The default working range for axis 6 can be extended by changing parameter values in the software. Option 610-1 "Independent axis" can be used for resetting the revolution counter after the axis has been rotated (no need for "rewinding" the axis).

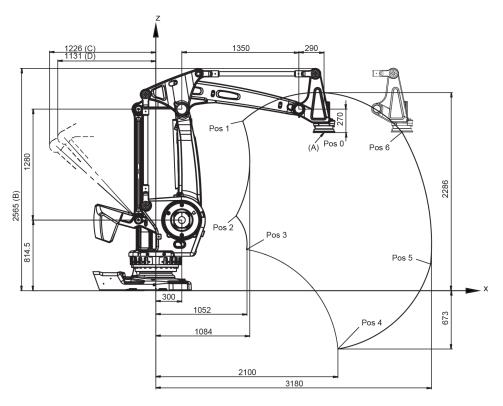

1.7.1 Introduction

Continued

Illustration

The following figure shows the extreme positions of the robot arm specified at tool flange center (dimensions in mm).

IRB 760 - 450/3.2



xx1000001151

Pos	Description
Α	Tool flange center
В	Max working range 2966 mm
С	Mechanical stop
D	Max working range

1.7.1 Introduction Continued

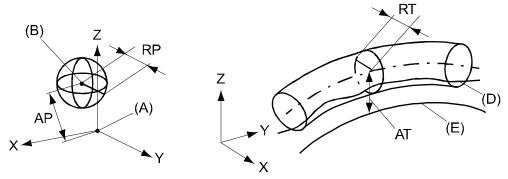
IRB 760 - 445/3.2

xx2000000272

Pos	Description
Α	Tool flange center
В	Max working range 3027 mm
С	Mechanical stop
D	Max working range

Positions at wrist center

Pos no. see Figure 16	X Position (mm)	Z Position (mm)	Axis 2 Angle (degrees)	Axis 3 Angle (degrees)
0	1940	1824,5	0	0
1	1002	1957	-42	-20
2	925	862	-42	28
3	896	198	50	120
4	1190	-513	85	120
5	3169	307	85	15
6	2839	1829	50	-20


1.7.2 Performance according to ISO 9283

1.7.2 Performance according to ISO 9283

General

At rated maximum load, maximum offset and 1.6 m/s velocity on the inclined ISO test plane, with all six axes in motion. Values in the table below are the average result of measurements on a small number of robots. The result may differ depending on where in the working range the robot is positioning, velocity, arm configuration, from which direction the position is approached, the load direction of the arm system. Backlashes in gearboxes also affect the result.

The figures for AP, RP, AT and RT are measured according to figure below.

xx0800000424

Pos	Description	Pos	Description
Α	Programmed position	E	Programmed path
В	Mean position at program execution	D	Actual path at program execution
AP	Mean distance from programmed position	AT	Max deviation from E to average path
RP	Tolerance of position B at repeated positioning	RT	Tolerance of the path at repeated program execution

Description	IRB 760-450/3.2 IRB 760-445/3.2
Pose accuracy, AP ^a (mm)	0.20
Pose repeatability, RP (mm)	0.05
Linear path repeatability, RT (mm)	0.80
Linear path accuracy, AT (mm)	3.30
Pose stabilization time, PSt (s) to within 0.5 mm of the position	0.13

a. AP according to the ISO test above, is the difference between the teached position (position manually modified in the cell) and the average position obtained during program execution.

The above values are the range of average test results from a number of robots.

1.7.3 Velocity

1.7.3 Velocity

Maximum axis speeds

Axis No.	IRB 760-450/3.2 IRB 760-445/3.2
1	85°/s
2	85°/s
3	85°/s
6	160°/s

There is a supervision function to prevent overheating in applications with intensive and frequent movements.

Axis Resolution

Approx. 0.01º on each axis.

1.7.4 Stopping distance/time

1.7.4 Stopping distance/time

General

Stopping distance/time for emergency stop (category 0), program stop (category 1) and at mains power supply failure at max speed, max stretched out and max load, categories according to EN 60204-1. All results are from tests on one moving axis. All stop distances are valid for floor mounted robot, without any tilting.

Robot type		Category 0		Catego	Category 1		Main power fail- ure	
	Axis	A	В	A	В	A	В	
IRB 760-450/3.2	1	32.9	0.75	54.3	1.19	37.8	0.8	
IRB 760-445/3.2	2	20.4	0.47	41.4	1.04	24.3	0.49	
	3	21.5	0.48	39.4	0.83	27.0	0.54	

	Description	
A	Stopping distance in degrees	
В	Stop time (s)	

1.8.1 Introduction

1.8 Customer connections

1.8.1 Introduction

General

Depending on the choice of options above the Customer connection will have different content. The choice of routing will not affect the content. See tables for signal content below.

For further information of the customer connection, see Specification of Variants and Options, Application interface Connection type.

Media & Communication, Ethernet, parallel communication and air

Туре	Application	Specification	Connection type	Supplier Art- icle No.	Comment
Functional Earth (FE)		10mm ²	M8 Cable lug		
Power (CP)	Utility power	4x0.75mm ² (5A/250VAC)	3-module Hart- ing, shell size 10B, EE	Female, EE, 8 pin9 140 083 101	1x0.75mm ² protective earth
Signals (CS)	Parallel communication	16x AWG24 + 10x AWG24 (50V/1A)	3-module Hart- ing, shell size 10B, HD+EE	Female, HD, 25 pin9 140 253 101	4 quad twisted, 5 screened pair twisted
Air (AIR)	Utility air	2x12.7 (1/2") P _{Nom} = 16 bar	Parker Push- lock,1/2" M22x1,5 Brass 24 degree seal		
Bus com- munication (BUS)	Ethernet/IP, PROFINET	4x0.4mm ²	M12, 4-poles, D-coded, male	Harting 21038821425	Ethernet CAT5e 100 Mbit ¹ .

Media & Communication, DeviceNet/Profibus, parallel communication and air

Туре	Application	Specification	Connection type	Harting Article No.	Comment
Power (CP)	Utility power	4x0.75mm ² (5A/250VAC)	3-module Harting, shell size 10B, EE	Female, EE, 8 pin9 140 083 101	1x0.75mm ² protective earth
Signals (CS)	Parallel com- munication	16x AWG24 + 10x AWG24 (50V/1A)	3-module Harting, shell size 10B, HD+EE	Female, HD, 25 pin9 140 253 101	4 quad twisted, 5 screened pair twisted
Bus Com- munication	Profibus	2xAWG26, Z=150 Ohm (1MHz)	Harting, shell	Female, DD, 12 pin9 140 123 101	
(BUS)	CANBus	2xAWG26, Z=120 Ohm (1MHz)	size 10B, DD		
	BUS power & BUS utility	2x2 AWG24			

¹ Ethernet with wire colors according to PROFINET standard

1 Description

1.8.1 Introduction Continued

Туре	Application	Specification	Connection type	Harting Article No.	Comment
Air (AIR)	Utility air	2x12.7 (1/2") P _{Nom} = 16 bar	Parker Push- lock,1/2" M22x1,5 Brass 24 de- gree seal		

1.9.1 Introduction

1.9 Maintenance and troubleshooting

1.9.1 Introduction

General

The robot requires only minimum maintenance during operation. It has been designed to make it as easy to service as possible:

- Maintenance-free AC motors are used
- · Oil is used for the gear boxes
- The cabling is routed for longevity, and in the unlikely event of a failure, its modular design makes it easy to change

Maintenance

The maintenance intervals depend on the use of the robot, the required maintenance activities also depends on selected options. For detailed information on maintenance procedures, see Maintenance section in the Product Manual.

2.1 Introduction to variants and options

2 Specifications of variants and options

2.1 Introduction to variants and options

General

The different variants and options for the IRB 760 are described in the following sections. The same option numbers are used here as in the specification form.

The variants and options related to the robot controller are described in the product specification for the controller.

2.2 Manipulator

2.2 Manipulator

Variants

Option	IRB Type	Handling capacity (kg)	Reach (m)
435-106	760	450	3.18
435-144 (only for press tend- ing applica- tion)	760	445	3.18

Manipulator color

Option	Description	Note
209-2	ABB White	The robot is painted in white color.
209-201	NCS 2070-Y60R Orange	The robot is painted in orange.
209-202	ABB Graphite white std.	The robot is painted in graphite white color.
209	RAL code	The robot is painted in chosen RAL - color.

Note

Notice that delivery time for painted spare parts will increase for none standard colors.

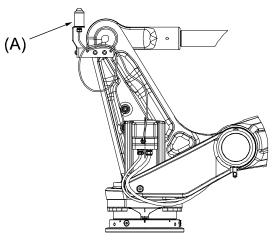
Protection

Option	Description
287-4	Standard

Media & Communication

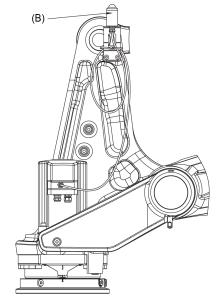
Air supply and signals for extra equipment upper arm, see *Customer connections* on page 43.

Option	Description	Note
803-2	Ethernet cable, parallel communication and air	Includes CP, CS, Ethernet + air
803-3	DeviceNet, parallel communication and air	Includes CP, CS and DeviceNet + air
803-4	PROFIBUS	Includes CP, CS and PROFIBUS + air


Connector kits

The kit consists of connectors, pins and sockets.

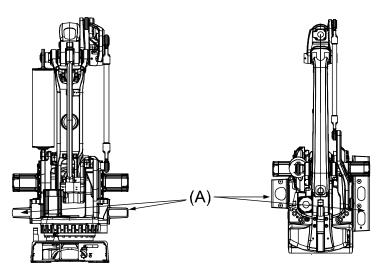
Option	Description	
431-1	For the connectors on the upper arm.	
239-1	For connectors on base.	


Safety lamp

Option	Description
213-1	A safety lamp with an orange fixed light can be mounted on the manipulator. The lamp is active in MOTORS ON mode. The safety lamp is required on a UL/UR approved robot.

xx1000001152

Pos	Description
Α	Safety lamp for IRB 760 - 450/3.2


xx2000000273

Pos	Description
В	Safety lamp for IRB 760 - 445/3.2

Fork lift device

Option	Description
159-1	Lifting device on the manipulator for fork-lift -handling.

2.2 Manipulator *Continued*

xx1000001154

Pos	Description
Α	Fork lift pockets (x2)

Baseplate

Option	Description
37-1	Can also be used for IRB 7600. See <i>Installation on page 16</i> for dimension drawing.

Resolver connection, axis 7

Option	Description	Note
864-1	On base	Used together with first additional drive, option 907-1.

Electronic Position Switches (EPS)

The mechanical position switches indicating the position of the three main axes are replaced with electronic position switches for up to 7 axes, for increased flexibility and robustness. For more detailed information, see *Product specification - Controller IRC5* and *Application manual - Electronic Position Switches*.

Working range limit Axis 1

To increase the safety of the robot, the working range of axis 1 can be restricted by extra mechanical stops.

Option	Туре	Description	
29-2	Axis 1, 7.5 degrees	Two stops which allows the working range to be restricted in increments of 7,5 degrees.	

2.2 Manipulator Continued

Extended work range

Option	Туре	Description
]		To extend the working range on Axis 1 from \pm 180° to \pm 220°.
		When the option is used the mechanical stop shall be disassembled.
		EPS (Electronic Position Switches) functionality (option 810-1 or -2) is required.

Warranty

For the selected period of time, ABB will provide spare parts and labour to repair or replace the non-conforming portion of the equipment without additional charges. During that period, it is required to have a yearly Preventative Maintenance according to ABB manuals to be performed by ABB. If due to customer restrains no data can be analyzed in the ABB Ability service *Condition Monitoring & Diagnostics* for robots with OmniCore controllers, and ABB has to travel to site, travel expenses are not covered. The Extended Warranty period always starts on the day of warranty expiration. Warranty Conditions apply as defined in the Terms & Conditions.

Note

This description above is not applicable for option Stock warranty [438-8]

Option	Туре	Description
438-1	Standard warranty	Standard warranty is 12 months from <i>Customer Delivery Date</i> or latest 18 months after <i>Factory Shipment Date</i> , whichever occurs first. Warranty terms and conditions apply.
438-2	Standard warranty + 12 months	Standard warranty extended with 12 months from end date of the standard warranty. Warranty terms and conditions apply. Contact Customer Service in case of other requirements.
438-4	Standard warranty + 18 months	Standard warranty extended with 18 months from end date of the standard warranty. Warranty terms and conditions apply. Contact Customer Service in case of other requirements.
438-5	Standard warranty + 24 months	Standard warranty extended with 24 months from end date of the standard warranty. Warranty terms and conditions apply. Contact Customer Service in case of other requirements.
438-6	Standard warranty + 6 months	Standard warranty extended with 6 months from end date of the standard warranty. Warranty terms and conditions apply.
438-7	Standard warranty + 30 months	Standard warranty extended with 30 months from end date of the standard warranty. Warranty terms and conditions apply.

2.2 Manipulator Continued

Option	Туре	Description	
438-8	Stock warranty	Maximum 6 months postponed start of standard warranty, starting from factory shipment date. Note that no claims will be accepted for warranties that occurred before the end of stock warranty. Standard warranty commences automatically after 6 months from <i>Factory Shipment Date</i> or from activation date of standard warranty in WebConfig.	
		Note	
		Special conditions are applicable, see <i>Robotics Warranty Directives</i> .	

2.3 Floor cables

Manipulator cable length

Option	Lengths
210-2	7 m
210-3	15 m
210-4	22 m
210-5	30 m

Application interface Connection

Option	Description	
16-1		The signals are connected to 12-pole screw terminals, Phoenix MSTB 2.5/12-ST-5.08, to the Control Module.

a) Note! In a MultiMove application, additional robots have no Control Module. The screw terminal with internal cabling are then delivered separately to be mounted in the main robot Control Module or in another encapsulation, for example a PLC cabinet.

Connection of Parallel/DeviceNet/Profibus/Ethernet connection

Following information specifies the cable length for Parallel/DeviceNet/Profibus/Ethernet connection floor cables for connections between cabinets and manipulator.

Option	Lengths
90-2/92-2/859-1/94-1	7 m
90-3/92-3/859-2/94-2	15 m
90-4/92-4/859-3	22 m
90-5/92-5/859-4/94-4	30 m

2.4 User documentation

2.4 User documentation

User documentation

The user documentation describes the robot in detail, including service and safety instructions.

All documents can be found via myABB Business Portal, www.myportal.abb.com.

3.1 Introduction to accessories

3 Accessories

3.1 Introduction to accessories

General

There is a range of tools and equipment available.

Basic software and software options for robot and PC

For more information, see *Product specification - Controller IRC5* and *Application manual - Controller software IRC5*.

Robot peripherals

Motor Units²

² Not applicable for IRC5 Compact controller.

Index options, 47 accessories, 55 product standards, 14 calibration safety standards, 14 standard type, 24 Calibration Pendulum, 26 service instructions, 54 standards, 14 ANSI, 15 CAN, 15 EN, 15 documentation, 54 EN IEC, 14 EN ISO, 14 Electronic Position Switches, 50 EPS, 50 standard warranty, 51 stock warranty, 51 fine calibration, 26 user documentation, 54 instructions, 54 variants, 47 manuals, 54 warranty, 51

ABB AB

Robotics & Discrete Automation S-721 68 VÄSTERÅS, Sweden Telephone +46 (0) 21 344 400

ABB AS

Robotics & Discrete Automation

Nordlysvegen 7, N-4340 BRYNE, Norway Box 265, N-4349 BRYNE, Norway Telephone: +47 22 87 2000

ABB Engineering (Shanghai) Ltd.

Robotics & Discrete Automation No. 4528 Kangxin Highway PuDong District SHANGHAI 201319, China Telephone: +86 21 6105 6666

ABB Inc.

Robotics & Discrete Automation

1250 Brown Road Auburn Hills, MI 48326 USA

Telephone: +1 248 391 9000

abb.com/robotics